GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Abstract

Context and purpose of the Study –Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

Material and Methods – Experiments were conducted during 2018 on Vitis vinifera L. Mouchtaro and Savvatiano grapevines at the Muses Estate winery (Muses Valley). All treatments were applied in triplicate in a randomized complete block design, with 25 vines for each replicate. Vines were sprayed with 0, 400 or 800 mg/L ABA aqueous solution at véraison, 3 and 6 days after the first application. Grapes were harvested at optimum sugar maturity and classical red and white winemaking procedures were followed. Standard analytical methods recommended by O.I.V. were used for grapes and wines (pH, alcoholic degree, total acidity, volatile acidity). Also, colour intensity, total phenolic compounds, tannin determination (Habertson et al., 2002; Sarneckis et al., 2006), browning test (Sioumis et al.,2006), and sensory analysis were performed.

Results- In both varieties, harvest was delayed in grapevines treated with ABA which is a highly promising result. According to the browning test, the lower value (k= 0.0024) for the color change factor of Savvatiano wines was observed at 400 mg/L ABA. Higher k values, of 0.0031 and 0.0037, were recorded at control wine and at 800 mg/L ABA, respectively. Consequently, it seems that wines produced by grapes treated with 400 mg/L of ABA would develop brown color later than the other samples examined in this study. Mouchtaro wines recorded the highest concentration of total anthocyanins (666- mg/L) for the wines produced by grapes treated with the highest ABA concentration. At the lower ABA concentration and the control the anthocyanins concentration was 640 and 568 mg/L, respectively. Wines were assayed for tannins according to BSA and MCP methods. Following the same trend, highest tannin concentration was observed at the highest ABA treatment (BSA: 9,40 mg/ L, and MCP :831 mg/L). Lower values of tannin concentration were recorded at the control wine (BSA: 6,98 & MCP :494 mg/L) and at the lowest ABA treatment (BSA: 6,42 & MCP: 609 mg/L ). Highest value of color intensity were scored by the wines receiving the highest ABA treatment (13,3) whereas, control and lower ABA concentration wines scored lower values (10,8 and 11,1). These preliminary results provide an insight into the effect of ABA on wine grapes, which is useful for grape quality.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Dimitrios-Evangelos MILLIORDOS1, Εvaggelia NANOU1, Nikolaos KONTOUDAKIS1, Yorgos KOTSERIDIS1

1 Agricultural University of Athens, Department of Food Science and Human Nutrition, Oenology Laboratory

Contact the author

Keywords

Absisic Acid, Vitis vinifera, Mouchtaro, Savvatiano

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.