GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Abstract

Context and purpose of the Study –Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

Material and Methods – Experiments were conducted during 2018 on Vitis vinifera L. Mouchtaro and Savvatiano grapevines at the Muses Estate winery (Muses Valley). All treatments were applied in triplicate in a randomized complete block design, with 25 vines for each replicate. Vines were sprayed with 0, 400 or 800 mg/L ABA aqueous solution at véraison, 3 and 6 days after the first application. Grapes were harvested at optimum sugar maturity and classical red and white winemaking procedures were followed. Standard analytical methods recommended by O.I.V. were used for grapes and wines (pH, alcoholic degree, total acidity, volatile acidity). Also, colour intensity, total phenolic compounds, tannin determination (Habertson et al., 2002; Sarneckis et al., 2006), browning test (Sioumis et al.,2006), and sensory analysis were performed.

Results- In both varieties, harvest was delayed in grapevines treated with ABA which is a highly promising result. According to the browning test, the lower value (k= 0.0024) for the color change factor of Savvatiano wines was observed at 400 mg/L ABA. Higher k values, of 0.0031 and 0.0037, were recorded at control wine and at 800 mg/L ABA, respectively. Consequently, it seems that wines produced by grapes treated with 400 mg/L of ABA would develop brown color later than the other samples examined in this study. Mouchtaro wines recorded the highest concentration of total anthocyanins (666- mg/L) for the wines produced by grapes treated with the highest ABA concentration. At the lower ABA concentration and the control the anthocyanins concentration was 640 and 568 mg/L, respectively. Wines were assayed for tannins according to BSA and MCP methods. Following the same trend, highest tannin concentration was observed at the highest ABA treatment (BSA: 9,40 mg/ L, and MCP :831 mg/L). Lower values of tannin concentration were recorded at the control wine (BSA: 6,98 & MCP :494 mg/L) and at the lowest ABA treatment (BSA: 6,42 & MCP: 609 mg/L ). Highest value of color intensity were scored by the wines receiving the highest ABA treatment (13,3) whereas, control and lower ABA concentration wines scored lower values (10,8 and 11,1). These preliminary results provide an insight into the effect of ABA on wine grapes, which is useful for grape quality.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Dimitrios-Evangelos MILLIORDOS1, Εvaggelia NANOU1, Nikolaos KONTOUDAKIS1, Yorgos KOTSERIDIS1

1 Agricultural University of Athens, Department of Food Science and Human Nutrition, Oenology Laboratory

Contact the author

Keywords

Absisic Acid, Vitis vinifera, Mouchtaro, Savvatiano

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

Towards faultless Grenache wines: impact of climate and maturity

Climate change is affecting wine production and inducing significant variability in wine composition between vintages.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.