GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Abstract

Context and purpose of the Study –Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

Material and Methods – Experiments were conducted during 2018 on Vitis vinifera L. Mouchtaro and Savvatiano grapevines at the Muses Estate winery (Muses Valley). All treatments were applied in triplicate in a randomized complete block design, with 25 vines for each replicate. Vines were sprayed with 0, 400 or 800 mg/L ABA aqueous solution at véraison, 3 and 6 days after the first application. Grapes were harvested at optimum sugar maturity and classical red and white winemaking procedures were followed. Standard analytical methods recommended by O.I.V. were used for grapes and wines (pH, alcoholic degree, total acidity, volatile acidity). Also, colour intensity, total phenolic compounds, tannin determination (Habertson et al., 2002; Sarneckis et al., 2006), browning test (Sioumis et al.,2006), and sensory analysis were performed.

Results- In both varieties, harvest was delayed in grapevines treated with ABA which is a highly promising result. According to the browning test, the lower value (k= 0.0024) for the color change factor of Savvatiano wines was observed at 400 mg/L ABA. Higher k values, of 0.0031 and 0.0037, were recorded at control wine and at 800 mg/L ABA, respectively. Consequently, it seems that wines produced by grapes treated with 400 mg/L of ABA would develop brown color later than the other samples examined in this study. Mouchtaro wines recorded the highest concentration of total anthocyanins (666- mg/L) for the wines produced by grapes treated with the highest ABA concentration. At the lower ABA concentration and the control the anthocyanins concentration was 640 and 568 mg/L, respectively. Wines were assayed for tannins according to BSA and MCP methods. Following the same trend, highest tannin concentration was observed at the highest ABA treatment (BSA: 9,40 mg/ L, and MCP :831 mg/L). Lower values of tannin concentration were recorded at the control wine (BSA: 6,98 & MCP :494 mg/L) and at the lowest ABA treatment (BSA: 6,42 & MCP: 609 mg/L ). Highest value of color intensity were scored by the wines receiving the highest ABA treatment (13,3) whereas, control and lower ABA concentration wines scored lower values (10,8 and 11,1). These preliminary results provide an insight into the effect of ABA on wine grapes, which is useful for grape quality.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Dimitrios-Evangelos MILLIORDOS1, Εvaggelia NANOU1, Nikolaos KONTOUDAKIS1, Yorgos KOTSERIDIS1

1 Agricultural University of Athens, Department of Food Science and Human Nutrition, Oenology Laboratory

Contact the author

Keywords

Absisic Acid, Vitis vinifera, Mouchtaro, Savvatiano

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Sustainable vineyard management at the regional scale: insights from a Swiss winegrowing region

Swiss wine producers are faced to high production costs and low-priced wine imports.