GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The current state and prospects for the development of viticulture and winemaking in Greece

The current state and prospects for the development of viticulture and winemaking in Greece

Abstract

Viticulture in Greece is the oldest, but in recent years there has been a reduction of areas intended for the production of wine products. The article contains data on viticulture in Greece. Over time, the land of Greek vineyards is fluctuating. There is a trend towards a decrease in areas in connection with the quota of products from the EU. The comparative estimation of the areas allocated for grapes in Greece and leading EU states (Spain and France) is given. Despite this development, the wine sector is not facing serious problems compared with other crops because the soil – climatic conditions favor viticulture in Greece and grape production gives high quality products. Greece is one of the countries with a slight increase of 2% in wine production, while the total wine production reached 2.6 million hectoliters, from 2.5 in 2016, that is 2% of total production in the European Union and 1% worldwide. Greece with wine production occupies the 12th place in the world and 4th in the European Union. As far as wine consumption is concerned, Greece remained at the same level as 2.3 million hectoliters for 2017, after falling in recent years. In recent years, the wine-growing trend has presented a serious and urgent problem due to the high competitive environment of importing wine products from Latin America.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ch. Paschalidis1, P. Zamanidis2, L. Papakonstantinou3, D. Petropoulos2, St. Sotiropoulos1 D. Taskos2, G. Chamurliev4, M. A. Ovchinnicov5

1 Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
2 Department of Viticulture of Athens. Institute of Olive Tree, Subtropical CropsandViticulture,.Hellenic Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
3 Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.
4 Russian University of Peoples’ Frendship, 6 Miklouho -Maclay St., Moscow Russia
5 Volgograd State Agrarian University . Volgograd Russia, 26 University Prospect

Keywords

viticulture, varieties of grape, grape products, consumption, wine export

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture.