GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The current state and prospects for the development of viticulture and winemaking in Greece

The current state and prospects for the development of viticulture and winemaking in Greece

Abstract

Viticulture in Greece is the oldest, but in recent years there has been a reduction of areas intended for the production of wine products. The article contains data on viticulture in Greece. Over time, the land of Greek vineyards is fluctuating. There is a trend towards a decrease in areas in connection with the quota of products from the EU. The comparative estimation of the areas allocated for grapes in Greece and leading EU states (Spain and France) is given. Despite this development, the wine sector is not facing serious problems compared with other crops because the soil – climatic conditions favor viticulture in Greece and grape production gives high quality products. Greece is one of the countries with a slight increase of 2% in wine production, while the total wine production reached 2.6 million hectoliters, from 2.5 in 2016, that is 2% of total production in the European Union and 1% worldwide. Greece with wine production occupies the 12th place in the world and 4th in the European Union. As far as wine consumption is concerned, Greece remained at the same level as 2.3 million hectoliters for 2017, after falling in recent years. In recent years, the wine-growing trend has presented a serious and urgent problem due to the high competitive environment of importing wine products from Latin America.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ch. Paschalidis1, P. Zamanidis2, L. Papakonstantinou3, D. Petropoulos2, St. Sotiropoulos1 D. Taskos2, G. Chamurliev4, M. A. Ovchinnicov5

1 Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
2 Department of Viticulture of Athens. Institute of Olive Tree, Subtropical CropsandViticulture,.Hellenic Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
3 Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.
4 Russian University of Peoples’ Frendship, 6 Miklouho -Maclay St., Moscow Russia
5 Volgograd State Agrarian University . Volgograd Russia, 26 University Prospect

Keywords

viticulture, varieties of grape, grape products, consumption, wine export

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Convergence and divergence in chemical and sensory profiles of disease-resistant and Vitis vinifera white wines from South Tyrol: addressing strategies for market adoption

This study investigates the chemical and sensory profiles of white wines produced from disease-resistant hybrid grape cultivars (DRHGCs) compared to traditional Vitis vinifera L. cultivars in South Tyrol, Italy.

Impacts of the projected changes in temperature under scenarios of climate change on vine phenology of three red varieties cultivated in Rioja (Spain)

Grapevine is one of the crops that may suffer more negative impacts
under climate change, due not only to changes in temperature but also due to water available. Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenology events and changes in the length of the growing season, which may have further effects on grape quality. The aim of this research was to analyze the changes in vine phenology of some red varieties (Tempranillo, Grenache and Carignan) cultivated in Rioja Oriental (Rioja DOCa), under different climate change scenarios.

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality

Legal and economic evolution of the Japanese wine industry in the 21st century

Historically bounded by strict regulations with a focus on taxation since the 19th century, the japanese wine industry stands at a crossroads in the 21st century, necessitated by alignment with international standards and opening towards global markets.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.