OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

Abstract

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals. Piperitone, a monoterpene ketone, was identified as a contributor to the positive mint aroma of aged red Bordeaux wines4,5. Further chemical and sensory investigations led to identification of a pool of mint aroma compounds (i.e. p-menthane lactones, carvone and menthol) potentially responsible for these positive olfactory notes.

The analyses of Merlot and Cabernet Sauvignon wines from various terroirs of the Bordeaux area suggested that there was a varietal influence on the mint aroma compound profiles5. Recently, a study in which we defined the terpenic profile of the two Italian grape varieties Corvina and Corvinone, confirmed that the concentration of the mint compounds is variety dependent, despite the terroir of origin of grapes.

These results revealed that Corvina wines were significantly richer in the pool of minty terpenes, in all the considered terroirs. Our recent results also revealed that these compounds already exist in the young wines, but at lower concentrations than in aged ones, thus suggesting that the mint compounds in wine reveal themselves during ageing. The mechanisms of this revelation are still unclear and are today studied. The results of the last years have opened the way to many questions that are still not answered and require further studies, in particular the role of the soil, viticultural practices, climate, rootstocks and varieties must be investigated. The determination of these compounds in wine is quite complex, as they are present at ng/L levels; however, they are sensory active also at trace levels, due to their low perception thresholds and synergistic sensory effect4.

The coupling of HS-SPME Arrow extraction and GC-MS-MS analysis has permitted to develop and validate an automated method of quantification. The development of this simple, sensitive and accurate analytical methods will allow to analyse large sets of wine, thus deepening the knowledge on the origin and expression of the minty and fresh aromas in wine, one of the most important piece of the puzzle of the ageing bouquet.

(1) Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. Food Qual. Prefer. 2015, 42, 110–122.
(2) Picard, M.; Thibon, C.; Redon, P.; Darriet, P.; De Revel, G.; Marchand, S. J. Agric. Food Chem. 2015, 63 (40), 8879–8889.
(3) Slaghenaufi, D.; Perello, M.-C.; Marchand, S.; de Revel, G. Food Chem. 2016, 203, 41–48.
(4) Picard, M.; de Revel, G.; Marchand, S. Food Chem. 2017, 217, 294–302.
(5) Picard, M.; Tempere, S.; De Revel, G.; Marchand, S. J. Agric. Food Chem. 2016, 64 (40), 7576–7584.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Maria Tiziana Lisanti 1, JustineLaboyrie 2, Céline Franc 2, Giovanni Luzzini 3, Davide Slaghenaufi 3, Maurizio Ugliano 3, Luigi Moio 1, Gilles de Revel 2, Stephanie Marchand 2

1) Universitàdegli Studi di Napoli Federico II, Sezione di Scienze della Vigna e del Vino, 83100 Avellino, Italy
2) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France
3) Wine chemistry laboratory Department of Biotechnology University of Verona Villa Ottolini-Lebrecht

Contact the author

Keywords

mint aromas, red wine, aging, terroir 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Multisensory experiential wine marketing

Interest in the pairing, or matching, of wine with music goes way back, with commentators initially using musical metaphors merely to describe the wines that they were writing about. More recently, however, this has transformed into a growing range of multisensory tasting events in which wine and music are deliberately paired to assess, or increasingly to illustrate, the impact of the latter on

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.