OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

Abstract

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals. Piperitone, a monoterpene ketone, was identified as a contributor to the positive mint aroma of aged red Bordeaux wines4,5. Further chemical and sensory investigations led to identification of a pool of mint aroma compounds (i.e. p-menthane lactones, carvone and menthol) potentially responsible for these positive olfactory notes.

The analyses of Merlot and Cabernet Sauvignon wines from various terroirs of the Bordeaux area suggested that there was a varietal influence on the mint aroma compound profiles5. Recently, a study in which we defined the terpenic profile of the two Italian grape varieties Corvina and Corvinone, confirmed that the concentration of the mint compounds is variety dependent, despite the terroir of origin of grapes.

These results revealed that Corvina wines were significantly richer in the pool of minty terpenes, in all the considered terroirs. Our recent results also revealed that these compounds already exist in the young wines, but at lower concentrations than in aged ones, thus suggesting that the mint compounds in wine reveal themselves during ageing. The mechanisms of this revelation are still unclear and are today studied. The results of the last years have opened the way to many questions that are still not answered and require further studies, in particular the role of the soil, viticultural practices, climate, rootstocks and varieties must be investigated. The determination of these compounds in wine is quite complex, as they are present at ng/L levels; however, they are sensory active also at trace levels, due to their low perception thresholds and synergistic sensory effect4.

The coupling of HS-SPME Arrow extraction and GC-MS-MS analysis has permitted to develop and validate an automated method of quantification. The development of this simple, sensitive and accurate analytical methods will allow to analyse large sets of wine, thus deepening the knowledge on the origin and expression of the minty and fresh aromas in wine, one of the most important piece of the puzzle of the ageing bouquet.

(1) Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. Food Qual. Prefer. 2015, 42, 110–122.
(2) Picard, M.; Thibon, C.; Redon, P.; Darriet, P.; De Revel, G.; Marchand, S. J. Agric. Food Chem. 2015, 63 (40), 8879–8889.
(3) Slaghenaufi, D.; Perello, M.-C.; Marchand, S.; de Revel, G. Food Chem. 2016, 203, 41–48.
(4) Picard, M.; de Revel, G.; Marchand, S. Food Chem. 2017, 217, 294–302.
(5) Picard, M.; Tempere, S.; De Revel, G.; Marchand, S. J. Agric. Food Chem. 2016, 64 (40), 7576–7584.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Maria Tiziana Lisanti 1, JustineLaboyrie 2, Céline Franc 2, Giovanni Luzzini 3, Davide Slaghenaufi 3, Maurizio Ugliano 3, Luigi Moio 1, Gilles de Revel 2, Stephanie Marchand 2

1) Universitàdegli Studi di Napoli Federico II, Sezione di Scienze della Vigna e del Vino, 83100 Avellino, Italy
2) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France
3) Wine chemistry laboratory Department of Biotechnology University of Verona Villa Ottolini-Lebrecht

Contact the author

Keywords

mint aromas, red wine, aging, terroir 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Application of viticulture zoning in Istria (Croatia) as important element for valorization of all territory resources (product, environment, tourism and others)

Un projet touristique innovant est en cours dans la zone historique croate d’Istrie Centrale, autour de la magnifique ville de Motovun. L’approche méthodologique repose sur le concept de «Système Productif-Global du Territoire» et s’appuie tout particulièrement sur celui de « Zonage Vitivinicole ». Elle tient compte de toutes les facettes, définies dans celui de « Grand Zonage » (Cargnello G., 1999).

Zoning influence in chromatic parameters in Monastrell grape

Zoning analysis determine homogeneous areas principally from the point of view of the medium, giving as a result a map which cartographic units synthesize the relations between the edaphic factors; morphological factors of the soil and climatic factors

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.