OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Abstract

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac. However, very few studies have been done on this subject especially regarding to aging notes with exotic wood (sandalwood) and balsamic descriptors. The aim of this work is to improve knowledge of these aromatic nuances.  

To answer this question, a sensory-guided approach was used after selection by an expert panel of aged Cognac spirits. After solvent extraction, HPLC fractionation was used in order to evidence fractions of interest recalling specific aromatic nuances of aged Cognac. Doing so, it was possible to select some HPLC fractions presenting interesting notes of aged Cognac and recalling particularly exotic wood and balsamic descriptors. Their contribution was demonstrated by reconstitution and omission tests with all HPLC fractions. 

 Then the GC-O/MS analysis of the selected fractions allowed to detect odorous zones and identify associated compounds. First, various well known compounds representative of terpenoids family were highlighted as geraniol, α-terpinene, nerol, α-terpineol, 1,8-cineole (eucalyptol) and particularly piperitone which was not cited in Cognac. These compounds were quantified and their detection thresholds were carried out. 

An insight of their evolution during aging shown that geraniol, α-terpinene, α-terpineol and 1,8-cineole concentrations increased while spirit were more aged, while nerol tend to decrease. However aging had no impact on piperitone. The impact of wine distillation with lees was also particularly considered and the quantification of these compounds showed an impact of this parameter of the elaboration process. 

 The organoleptic impact of 1,8-cineole was highlighted in Cognac at concentration over its detection threshold. While continuing the GC-O analysis and its coupling to mass spectrometry, aroma nuances of sandalwood, were particularly noticeable. Thus, other molecules were identified through the sensory-guided method. They were santalol with sandalwood nuances and α-campholenal with tea and sandalwood nuances, both of which were related to sandalwood, respectively a sesquiterpene and a monoterpene. These new identifications thus open up a large field of investigation concerning the terpenoids family and their sensory impact within the aged Cognac matrix.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Fannie Thibaud, Marie Courregelongue, Philippe Darriet

Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

Cognac, aroma, terpene, gas chromatography 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Influence du porte-greffe sur le statut minéral du greffon

Dans le cadre de TerclimPro 2025, Elisa Marguerit a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8387

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.