OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 What is the fate of oxygen consumed by red wine? Main processes and reaction products

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Abstract

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level. Experiences carried out at 25 ºC with red wines have demonstrated that after consuming a large amount of O2, some young wines did not form acetaldehyde. However, acetaldehyde level increased in aged wines. Higher acetaldehyde accumulation in aged wines can be explained by Aldehyde Reactive Polyphenols (ARPs) smaller amounts, because of their lower reactive potential due to high O2 exposure. Models characterized ARPs as anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts. These ARPs should be closely related to wine aging potential by measuring acetaldehyde consumption rate (ACRs) and/or the maxima amounts of acetaldehyde each wine can consume. 

The main goal of this work was to find a new polyphenol index which should be linked to wine oxygen consumption kinetics. It could indicate the maximum oxygen level that a wine can consume. As well as, elucidate if acetaldehyde is the reactive species with ARPs, but one of its radical precursors in the Fenton reaction. 

Three experiments were prepared in anoxia followed by total acetaldehyde determination by using HPLC: 1) wines spiked with 30 and 300 mg/L of acetaldehyde and incubated at 25, 45 and 70 °C; 2)synthetic wines spiked with 15 to 120 mg/L of acetaldehyde and polyphenol extracts; 3) synthetic matrices filled with malvidin-3-O-glucoside, catechin and a mix of both, which were exposed to: a) 8 mg/L O2 to form acetaldehyde in situ or b) to anoxia and spiked acetaldehyde (11 mg/L). 

Several wines consume acetaldehyde at different rates, which are particularly imprecise at low temperatures. This makes impractical the use of ACRs as an index to categorize wine polyphenolic composition by defining a discrete ARP category. ACRs are too complex, showing a high dependence order towards acetaldehyde level and an equilibrium concentration. Such concentrations were found to depend on the previous acetaldehyde uptake by the polyphenolic fraction, but it was too imprecise to take clear conclusions. In any case, measured ACRs are smaller than expected attending to oxygen consumption kinetics and acetaldehyde accumulation rates. No significant differences were found when comparing the acetaldehyde formed in situ or when acetaldehyde was spiked. 

Results show that oxygen consumed by wine is used to oxidize SO2, ethanol and at least 50 % to oxidize ascorbic acid, cysteine, glutathione, H2S, thiols, methionine and phenols. 

This work has been funded by the Spanish Ministry of Economy and Competitiveness (Spanish FPI Program AGL2014-59840-C2-1-R, AGL2017-59840), by Diputación General de Aragón (T53) and Fondo Social Europeo.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Almudena Marrufo-Curtido, Elena Bueno-Aventín, Vicente Ferreira, Ana Escudero

Laboratory for Aroma analysis and Enology (LAAE). Instituto Agroalimentario de Aragón (ia2). Department of Analytical Chemistry. Associated unit to Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC, UR, CAR) Universidad de Zaragoza.

Contact the author

Keywords

Oxygen, Acetaldehyde, Polyphenol index, Anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Projections of vine phenology and grape composition of Tempranillo variety In Rioja DOCa (Spain) under climate change

Aims: Some of the most direct effects of climate variability on grapevines are the changes in the onset and timing of phenological events and in the length of the growing season, which may affect grape quality. The aim of this research was to analyze the projected changes in vine phenology and on grape composition of the Tempranillo variety in Rioja DOCa under different climate change scenarios.

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors.

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.