OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Impact of glutathione-rich inactivated yeast on wine chemical diversity

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Abstract

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must. Glutathione is beneficial to the wine quality, but scientists also highlighted that GSH-IDYs have a greater effect than only increase the pool of this antioxidant in the wine. This work unveils the extent of diversity of compounds potentially released by three different IDYs with increasing GSH contents.

Unsupervised analysis of IDYs released compounds in model wine was performed with the ultra-high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). This powerful tool allows to have an instant picture of the released compounds chemical diversity. Bioinformatics strategy (chemometric analysis and network annotation) were then applied to visualize and refine the generated data.

Our results clearly show an impact of the GSH accumulation process not only visible on the glutathione itself, but also on the global diversity of compounds. The ratio of annotated CHONS/CHO ions increased from 0.2 to 2.1 respectively with the accumulation of GSH. The IDY with the highest concentration of GSH released 36 unique CHONS annotated ions compared to the two others IDYs. Since the bioprocess dedicated to accumulate the intracellular glutathione used cysteine rich medium, the possibility to attribute this diversity to notably a larger number of cysteinyl residues in peptides raised. Within the 1699 detected ions by (-)FT-ICR-MS, 193 were annotated as peptide sequences (from 2 to 5 residues). Within this pool of peptides, the IDY specific diversity increased with the level of glutathione from 5 to 45 unique m/z. Besides the global diversity, m/z attributed to cysteine containing peptides were much more abundant in the GSH-rich IDY. Within the 25 peptides containing cysteine, and common to the three IDYs, 64 % were more intense in GSH-rich IDY. Thus, the process leading to accumulate glutathione is also involved in other metabolic pathways which contribute to increase CHONS containing compounds and notably peptides.

This work gives new clues on the potential of biotechnology to improve the efficiency of natural yeast derivatives to produce potential active compounds such as cysteine containing peptides. This could lead to substitute partially the chemical additives and thus leading to a better control of wine quality and a better consumer acceptability.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Florian Bahut, Youzhong Liu, Rémy Romanet, Nathalie Sieczkowski, Hervé Alexandre, Christian Coelho, Philippe Schmitt-Kopplin, Maria Nikolantonaki, Régis D. Gougeon

Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
Technische Universität München, Analytical Food Chemistry, Akademie 10, 85354 Freising, Germany

Contact the author

Email address (with mailto: link)

Keywords

yeast derivative, glutathione enrichment, metabolomic, peptide diversity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.