OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Impact of glutathione-rich inactivated yeast on wine chemical diversity

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Abstract

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must. Glutathione is beneficial to the wine quality, but scientists also highlighted that GSH-IDYs have a greater effect than only increase the pool of this antioxidant in the wine. This work unveils the extent of diversity of compounds potentially released by three different IDYs with increasing GSH contents.

Unsupervised analysis of IDYs released compounds in model wine was performed with the ultra-high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). This powerful tool allows to have an instant picture of the released compounds chemical diversity. Bioinformatics strategy (chemometric analysis and network annotation) were then applied to visualize and refine the generated data.

Our results clearly show an impact of the GSH accumulation process not only visible on the glutathione itself, but also on the global diversity of compounds. The ratio of annotated CHONS/CHO ions increased from 0.2 to 2.1 respectively with the accumulation of GSH. The IDY with the highest concentration of GSH released 36 unique CHONS annotated ions compared to the two others IDYs. Since the bioprocess dedicated to accumulate the intracellular glutathione used cysteine rich medium, the possibility to attribute this diversity to notably a larger number of cysteinyl residues in peptides raised. Within the 1699 detected ions by (-)FT-ICR-MS, 193 were annotated as peptide sequences (from 2 to 5 residues). Within this pool of peptides, the IDY specific diversity increased with the level of glutathione from 5 to 45 unique m/z. Besides the global diversity, m/z attributed to cysteine containing peptides were much more abundant in the GSH-rich IDY. Within the 25 peptides containing cysteine, and common to the three IDYs, 64 % were more intense in GSH-rich IDY. Thus, the process leading to accumulate glutathione is also involved in other metabolic pathways which contribute to increase CHONS containing compounds and notably peptides.

This work gives new clues on the potential of biotechnology to improve the efficiency of natural yeast derivatives to produce potential active compounds such as cysteine containing peptides. This could lead to substitute partially the chemical additives and thus leading to a better control of wine quality and a better consumer acceptability.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Florian Bahut, Youzhong Liu, Rémy Romanet, Nathalie Sieczkowski, Hervé Alexandre, Christian Coelho, Philippe Schmitt-Kopplin, Maria Nikolantonaki, Régis D. Gougeon

Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
Technische Universität München, Analytical Food Chemistry, Akademie 10, 85354 Freising, Germany

Contact the author

Email address (with mailto: link)

Keywords

yeast derivative, glutathione enrichment, metabolomic, peptide diversity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.