OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Impact of glutathione-rich inactivated yeast on wine chemical diversity

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Abstract

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must. Glutathione is beneficial to the wine quality, but scientists also highlighted that GSH-IDYs have a greater effect than only increase the pool of this antioxidant in the wine. This work unveils the extent of diversity of compounds potentially released by three different IDYs with increasing GSH contents.

Unsupervised analysis of IDYs released compounds in model wine was performed with the ultra-high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). This powerful tool allows to have an instant picture of the released compounds chemical diversity. Bioinformatics strategy (chemometric analysis and network annotation) were then applied to visualize and refine the generated data.

Our results clearly show an impact of the GSH accumulation process not only visible on the glutathione itself, but also on the global diversity of compounds. The ratio of annotated CHONS/CHO ions increased from 0.2 to 2.1 respectively with the accumulation of GSH. The IDY with the highest concentration of GSH released 36 unique CHONS annotated ions compared to the two others IDYs. Since the bioprocess dedicated to accumulate the intracellular glutathione used cysteine rich medium, the possibility to attribute this diversity to notably a larger number of cysteinyl residues in peptides raised. Within the 1699 detected ions by (-)FT-ICR-MS, 193 were annotated as peptide sequences (from 2 to 5 residues). Within this pool of peptides, the IDY specific diversity increased with the level of glutathione from 5 to 45 unique m/z. Besides the global diversity, m/z attributed to cysteine containing peptides were much more abundant in the GSH-rich IDY. Within the 25 peptides containing cysteine, and common to the three IDYs, 64 % were more intense in GSH-rich IDY. Thus, the process leading to accumulate glutathione is also involved in other metabolic pathways which contribute to increase CHONS containing compounds and notably peptides.

This work gives new clues on the potential of biotechnology to improve the efficiency of natural yeast derivatives to produce potential active compounds such as cysteine containing peptides. This could lead to substitute partially the chemical additives and thus leading to a better control of wine quality and a better consumer acceptability.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Florian Bahut, Youzhong Liu, Rémy Romanet, Nathalie Sieczkowski, Hervé Alexandre, Christian Coelho, Philippe Schmitt-Kopplin, Maria Nikolantonaki, Régis D. Gougeon

Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
Technische Universität München, Analytical Food Chemistry, Akademie 10, 85354 Freising, Germany

Contact the author

Email address (with mailto: link)

Keywords

yeast derivative, glutathione enrichment, metabolomic, peptide diversity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.