terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Abstract

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.  In our study, we generated DNA metabarcoding data from healthy, noble rot and grey rot berries [1] [2] in 3 different vineyards from the Tokaj wine region from Furmint cultivar. We analyzed the fungal microbiome of the collected samples and characterized the location by its microbial ecology. The results found in our study can be a basis of further studies regarding to their functional role in the noble rot process and contribution to wine parameters.

Acknowledgements: This work was financed by MEC_R 141145 and the NRDI fund – TKP2021-NKTA-16.  

References:

  1. Hegyi-Kaló, J. et al. (2020). Physico-chemical characteristics and culturable microbial communities of grape berries change strongly during noble rot development.Plants, 9(12), 1809.
  2. Otto, M. et. al. (2022). Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes.Food Microbiology, 106, 104037., DOI: 10.1016/j.fm.2022.104037

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hegyi-Kaló Júlia1, Otto Margot1, Hegyi Ádám István1,2, Geml József1,3, Geiger Adrienn1, Golen Richárd1, Cels Thomas1, Gomba-Tóth Adrienn1, Váczy Kálmán Zoltán1

1 Eszterházy Károly Catholic University, Food and Wine Research Institute 3300 Eger Leányka út 6. HUNGARY
2 Doctoral School of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, HUNGARY
3 ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, 3300 Eger, HUNGARY

Contact the author*

Keywords

Noble rot, Aszú, Botrytis cinerea, Fungal metabarcoding, Phases of noble rot

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.