terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

Abstract

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments. Therefore, 36 non-Saccharomyces yeasts belonging to 9 species previously isolated from wine grapes cv. Malbec from 4 districts of the winemaking region DO San Rafael (Mendoza, Argentina) were evaluated for their ability to produce acetic acid in calcium carbonate medium, hydrogen sulfide (H2S) in BIGGY agar medium and undesirable aromas by a sensory evaluation after incubation in pasteurized grape juice with p-coumaric acid. In general, Pichia kudriavzevii strains were the larger producers of aroma defects, different from “Brett”, and H2S, but there was no sign of acid production. Strains of Hanseniaspora uvarum and Hanseniaspora guilliermondii produced unpleasant aromas, high acetic acid and low values of H2S production. Other strains that showed interesting results were Zygosaccharomyces bailii and Hanseniaspora vineae; they were H2S producers and acidogenic, however they did not produce significant defects in the grape must screening test. There are some strains that could be consider as possible wine spoilage yeasts but deeper studies need to be done. It is important to study them in order to know the main species responsible for the more significant damage in oenology with the purpose of controlling them.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juliana Garau1, María Gabriela Merín1, María Carolina Martín1, Eugenia Sevillano1, Vilma Inés Morata de Ambrosini1

1Instituto de Ciencias Aplicadas a la Industria- ICAI (Consejo Nacional de Investigaciones Científicas y Técnicas -CONICET/ Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo). Bernardo De Irigoyen 375, CP: 5600, San Rafael (Argentina).

Contact the author*

Keywords

spoilage yeasts, San Rafael wine region, Malbec, aroma defects, H2S, acidogenic

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.