terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

Abstract

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments. Therefore, 36 non-Saccharomyces yeasts belonging to 9 species previously isolated from wine grapes cv. Malbec from 4 districts of the winemaking region DO San Rafael (Mendoza, Argentina) were evaluated for their ability to produce acetic acid in calcium carbonate medium, hydrogen sulfide (H2S) in BIGGY agar medium and undesirable aromas by a sensory evaluation after incubation in pasteurized grape juice with p-coumaric acid. In general, Pichia kudriavzevii strains were the larger producers of aroma defects, different from “Brett”, and H2S, but there was no sign of acid production. Strains of Hanseniaspora uvarum and Hanseniaspora guilliermondii produced unpleasant aromas, high acetic acid and low values of H2S production. Other strains that showed interesting results were Zygosaccharomyces bailii and Hanseniaspora vineae; they were H2S producers and acidogenic, however they did not produce significant defects in the grape must screening test. There are some strains that could be consider as possible wine spoilage yeasts but deeper studies need to be done. It is important to study them in order to know the main species responsible for the more significant damage in oenology with the purpose of controlling them.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juliana Garau1, María Gabriela Merín1, María Carolina Martín1, Eugenia Sevillano1, Vilma Inés Morata de Ambrosini1

1Instituto de Ciencias Aplicadas a la Industria- ICAI (Consejo Nacional de Investigaciones Científicas y Técnicas -CONICET/ Facultad de Ciencias Aplicadas a la Industria, Universidad Nacional de Cuyo). Bernardo De Irigoyen 375, CP: 5600, San Rafael (Argentina).

Contact the author*

Keywords

spoilage yeasts, San Rafael wine region, Malbec, aroma defects, H2S, acidogenic

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.