terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

Abstract

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system. Passing through the valve causes a series of mechanical forces (impact, shear, cavitation, friction) which produce an antimicrobial and anti-enzymatic effect, as well as nanofragmentation in biopolymers. Since both, phenolic composition and PPO activity, depend on the variety, the research of the response of musts from different varieties to this technique is essential. This work investigates, by using HPLC techniques, the response of polyphenol oxidase activity, flavonols, flavanols, phenolic acids and total phenols to the application of a) the UHPH technique (working flow rate: 60 L/h, at 300 ± 3 MPa, inlet T of 4ºC, in-valve T of 95 ± 2 ºC for less than 0.2 s and an outlet T of 14 ºC) and b) SO2 (total dose 60 mg/L) of musts of Xarel·lo (Xar), Moscatel de Alexandria (M) and Garnacha blanca (Gb) from the 2022 vintage. The impact of the techniques applied depended on the variety considered and the effectiveness of UHPH could be established in the following pattern: Xar ≥ M > Gb. Moreover, phenolic acids were more sensitive to the action of SO2 than the UHPH. In general, with the exception of M must, phenolic acids, flavanols and total phenols responded similarly to both treatments applied.

Acknowledgements: This work is founded by Operational Groups of the European Association for Innovation (AEI) in terms of agricultural productivity and sustainability (operation 16.01.01 of the Rural Development Program of Catalonia (PDR) 2014-2022). Generalitat de Catalunya.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Esperanza Valdés-Sánchez1, Daniel Moreno-Cardona1, Nieves Lavado-Rodas1, Angela Fondon-Aguilar1, Gemma Roca-Domènech2 and Anna Puig-Pujol2

1Food and Agriculture Technology Institute of Extremadura (CICYTEX_INTAEX). Adolfo Suárez s/n Avenue, Badajoz, 06071, Spain
2INCAVI-IRTA. Catalan Institute of Vine and Wine – Institute of Agrifood Research and Technology. Plaça Àgora, 2. 08720 Vilafranca del Penedès, Barcelona, Spain

Contact the author*

Keywords

Xarel·lo, Moscatel, Garnacha blanca, flavonols, flavanols, phenolic acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.