terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Abstract

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.

In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

In this study, two kinds of UV-B applications were performed on Tempranillo grapes. On one hand, grape clusters at commercial maturity were supplemented with UV-B for five days before harvest, using a tractor-mounted lamp. On the other hand, postharvest bunches were irradiated with UV-B using an automated postharvest application technology.

In both cases, after UV-B application, the overall levels of phenolic compounds were analyzed, as well as the phenolic profile of the grape skins. The main response to the UV-B treatment in preharvest was an increase in flavonols, mainly quercetins. In the postharvest application, both total phenol and flavonol contents increased, while hydroxycinnamic acid derivatives showed an opposite trend, with higher concentrations in the control treatment. In neither treatment did the sugar content or acidity of the grapes change.

In conclusion, the application of UV-B, both in pre- and postharvest, improved the phenolic quality of grape skins, mainly through the increase in flavonols. Our study opens new possibilities to realistically introduce the mechanical application of supplemental UV-B radiation as an additional agricultural practice under commercial field conditions at crop scale (pre- and postharvest), in order to improve grape quality. This could be of great importance in the context of climate change in which we are immersed.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Hidalgo-Sanz R., Del-Castillo-Alonso M.A., Monforte-López L., Tomás-Las-Heras R., Núñez-Olivera E and Martínez-Abaigar J.

Faculty of Science and Technology, University of La Rioja. 26006 Logroño (La Rioja), Spain

Contact the author*

Keywords

phenolic composition, grape skins, UV-B radiation, Vitis vinifera L. cv. Tempranillo

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.