GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Abstract

Context and purpose of the study – Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions. The aim of the experiment was to study the effect of pre-, and post-veraison water deficit on grape berry phenolic maturity and texture characteristics.

Material and methods – Plants were planted into 50L white plastic containers in a mixture of perlite (20 %), loamy soil (30 %) and peat (50 %) (v/v). Three regimes of water supply were examined: (1) moderate water deficit from berry set until veraison (WD1), (2) moderate water deficit from veraison until harvest (WD2), (3) no water deficit (C). The water deficit treatments defined by the leaf daily stomatal conductance (between
50-150 H2O mmol m-2s-1). Anthocyanin glucosides and flavonols from berry skin were measured by Shimadzu HPLC system, berry texture characteristics were monitored by TA.XT Plus Texture Analyser. Cell and seed maturity indexes (CMI %, SMI %) and basic parameters (yield, sugar concentration, pH, must acidity) were also investigated.

Results – Pre-veraison treatment resulted in the lowest berry and cluster weight. The highest sugar concentration was found in control berries, and it was followed by the WD1 and WD2 treatments. Berries of the well-watered plants presented the lowest phenolic concentration. Pre-veraison water deficit resulted in a sllighty higher concentration of anthocyanin-glucosides compared to post-veraison water deficit. Water restriction during the ripening period induced higher flavonol (ie. quercetin, kaempferol etc.) concentration related to berry skin fresh weight as well as to the whole berry compared to WD1 treatment. Berry skin hardness (Fsk) was the highest in the case WD2 and the lowest was in WD1. Similar results were obtained in the case of berry skin thickness (Spsk). Seed (SMI %) maturity index presented higher values in the case of WD treatments compared to C. Cell maturity index (CMI %) of WD2 was significantly higher than C and WD1, however no differences were found between C and WD1.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Zsolt Zsófi1Ottó Bencsik2, András Szekeres2, Xénia Pálfi3, Ádám Bozó1,Szabolcs Villangó1

(1) Eszterházy Károly University, Department of Viticulture And Oenology, Leányka Str. 6, Eger H-3300 Hungary
(2) University Of Szeged, Department Of Microbiology, Közép Fasor 52., Szeged, H-6726 Hungary, 3eszterházy Károly University, Food And Wine Research Institute, Leányka Str. 6., Eger, H-3300, Hungary

Contact the author

Keywords

water deficit, anthocyanin extractability, phenolic maturity, berry texture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterizing chemical influences of smoke on wine via novel application of 13c-labelled smoke

Smoke impact is an ongoing and growing issue for vintners across the globe, with the west coast of the U.S. and Australia being two of the largest wine industries impacted. Wine has shown to be especially sensitive to smoke exposure, often acquiring off-flavor sensory characteristics, such as “burnt rubber”, “ashy”, or other medicinal off-flavors.1 While several studies have examined the chemical composition of smoke influences on wine, some studies disagree on what compounds are having the largest impact on smell and flavor.2 This study is designed as a bottom-up approach to inventory the chemical compounds derived from smoke from a grassland-like fire that are potentially influencing wine chemical composition.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.