GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition


Context and purpose of the study – Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector. The wine industry plays a weighty role in Chile’s economy, where contributes considerably to the country financial development. Counting the vulnerability of the country to such changes, it is fundamental to enact preventive measures aiming at besting the resources management, above all water necessities for cultivated crops. Optimal irrigation in grapevines could be accomplished by means of physiological data based programming and final grape and wine chemical and sensory performance. This study aims to understand the impacts of different levels of deficit irrigation on a large amount of chemical markers from aroma to non-volatile compounds, and the final impact on sensory profile.   

Material and methods – A regulated deficit irrigation (RDI) experimental trial that was conducted in a commercial vineyard of Cabernet Sauvignon in the Maule valley in central Chile. Four regulated deficit irrigation (RDI regimes were employed in four replicated blocks to replenish different portions of evapotranspiration (ET) from pea-size stadium until harvest. These managements were conceived 100 % ET, 70 % ET, 50-100 % ET (50 % ET before veraison and 100 % ET afterward) and 25-100 % ET (25 % ET before veraison and 100 % ET afterward). The following parameters were measured: midday stem water potential (Ψstem), stomatal conductance (gs), vine and grapes growth, yield, quality of must. GSMS for norisoprenoid, terpene, C6s compounds and methoxypyrazines concentration and HPLC for anthocyanin and low molecular weight phenols was used. 

Results – Of definite interest were the outcomes from the grapes’ evolution monitoring, as we had expectations of an alteration in their development in RDI conditions. Apart from the mere berry size, which showed significant differences between the treatments and control, no other variations have been registered. Surprisingly, the °Brix degrees were very alike, indicating that a reduced water availability does not always imply a faster maturation of the sugars in the grapes, as opposed to previous investigations that shows that a conventional irrigation may imply a delay in sugar accumulation. These circumstances additionally, allowed us to harvest all of the four regimes at the same time, thus providing optimal comparison bases. Significant differences were found in several traits, from lower concentration of malic acid in RDI treatments to higher concentrations of anthocyanin and some specificflavonoids like quercetin and miricetins. In the case of aroma compounds, our partial results indicate a significant effect of the RDI in increasing the concentration of 3-Isobutyl-2-methoxypyrazine. This result might be linked to increased light interception in the RDI treatments, who tend to defoliate early in the season


Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster


Sebastian Vargas1, Francesco Guidi1,2, Edmundo Bordeu3, Alvaro Gonzalez1, Samuel Ortega-Farías4

(1) Centro de Investigación e Innovación de Viña Concha y Toro, Ruta K-650 km 10 Pencahue, Chile
(2) École Supérieure d’Agriculture d’Angers, 55 rue Rabelais 49007 Angers, France
(3) Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
(4) Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca, Av. Lircay s/n, Talca, Chile

Contact the author


regulated deficit irrigation, Cabernet Sauvignon, stem water potential, stomatal conductance, yield components, IBMP, Low molecular weight phenols.


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?

Tolerance to sunburn: a variable to consider in the context of climate change

Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.