GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Survey reveals training needs for airblast sprayer operators

Survey reveals training needs for airblast sprayer operators

Abstract

Context and purpose of the study – In California, little training in sprayer calibration or pesticide drift management is required to apply pesticides. Yet, there is a need to maximize pesticide efficacy and minimize drift. Therefore, our team is developing a training course on airblast application best practices. We distributed a survey to identify current practices and used importance-performance analysis to interpret responses to the importance of spray related topics and satisfaction with previous training.

Material and methods – In 2018 we solicited survey replies, receiving 219 responses from winegrape and orchard industry members. Respondents rated 18 spray topics using a Likert-type scale. Topic categories included sprayer calibration, weather, techniques to reduce drift, and applicator attitude. Respondents rated 1) how important each topic is to them and 2) how satisfied they are with the quality of training they had previously received; or “no training received”. Results were calculated by topic as the mean importance (y) and satisfaction with training (x), and graphed using (x,y) as coordinates. The overall importance and performance means were used to define graph quadrants; the resulting topic placement in the quadrants prioritized training needs. We also asked: “Do you change your sprayer set up?”, “What steps do you take to calibrate?” and “Have you experienced a pest control failure that could have been related to a poor spray application?”

Results – Checking spray coverage ranked the most important topic while improving safety ranked highest for satisfaction. Topics fell into quadrants: 1.-high priority: checking coverage, selecting nozzles, reducing costs, and measuring flow; 2.-less emphasis: measuring application rate, measuring speed, improving safety, checking wind speed, reducing drift, and checking pressure; 3.-low interest: reducing spray loss to the ground, adjusting air flow, determining droplet size, checking temperature, determining if an inversion exists, using the low-drift technique “Gear up, Throttle down”, and checking relative humidity; 4.-low priority: checking wind direction. Responses to “What steps do you take to calibrate?” included measuring speed (44.9%), spraying out the tank to a known area (35.6%) and checking nozzles (34.7%). Only 8.1% of respondents check coverage and 5.9% admitted not calibrating or not often. 38% do not change their sprayer set-up once the season begins. Over half experienced a pest control failure they suspect was due to poor application; grape powdery mildew had the highest perceived failure. Respondents understand drift is undesirable but assign less importance to practices to reduce drift incidence, possibly due to lack of training received by 6-23%. Our course will focus on high priority topics; and checking weather and equipment to minimize drift.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Lynn WUNDERLICH1, Franz NIEDERHOLZER2, Lisa BLECKER3, Rhonda J. SMITH4, Stephanie BOLTON5

1 UCCE, 311 Fair Lane, Placerville, California, 95667 USA
2 UCCE, P.O. Box 180, 100 Sunrise Blvd., Colusa, California, 95932 USA
3 UCIPM, 2801 Second St., Davis, California, 95618 USA
4 UCCE, 133 Aviation Blvd. Santa Rosa, California, 95403 USA
5 Lodi Winegrape Commission, 2545 Turner Rd., Lodi, California, 95242 USA

Contact the author

Keywords

Airblast sprayer, calibration, training, survey 

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Conversion to mechanical management in vineyards maintains fruit

Current environmental, ecological and economic issues require a better vineyard production management. In fact, a poor use of fertilizing could lead to harmful impact on environment. Another issue concerns the cultures themselves which couldn’t use fertilizers efficiently, leading to a loss of income or too much expense for farmers. Presently, estimation of fertilization’s needs is realized by the laboratory analysis of leaves selected through a random sampling. The present study aims at optimizing fertilization’s management by using a map of biophysical parameters estimated from satellite images.

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.