terclim by ICS banner
IVES 9 IVES Conference Series 9 EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Abstract

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs). Each modality was twice-distilled at the same ABV (Alcohol By Volume) to produce white spirits. Quantified by HS-SPME-GC/MS with a proven methodology, eugenol is particularly concentrated in wines (median content 43 μg/L) and white spirits (me-dian content 124 μg/L) made with Baco blanc cultivar. Eugenol content in wines and spirits were mainly determined (66%) by harvest time: the earlier the harvest date, the higher eugenol concentration in wines (variation from 28 to 126 μg/L) and spirits (variation from 57 to 317 μg/L). This observation was confirmed by measuring the concentration of eugenol in Baco blanc berries during their development. Our results also highlight the fact that the use of β-glucosidase enzymatic preparation after alcoholic fermentation (21% of determination) permits to enhance eugenol levels. At the evidence a bound fraction of eugenol in Baco blanc wines exists. The perspective of identification and evaluation of the eugenol precursor have been operated to improve quality of Baco blanc products. First approaches trends to identify a majority precursor (80% of the bound eugenol). Moreover the use of a full factorial DoE highlighted the key steps of winemaking process that most influence the concentrations of the different forms of eugenol. Sensory analyses carried out with a panel of professionals trends to show that eugenol is involved in perceptual interactions at the heart of Baco blanc spirits quality. Finally, the different forms of eugenol are not only a subject of study for Armagnac spirits, but of wider interest in the composition of hybrid and resistant vines and in the characterisation of the organoleptic quality of wine spirits.

 

1. Franc, C., Riquier, L., Hastoy, X., Monsant, C., Noiville, P., Pelonnier-Magimel, E., Marchand-Marion, S., Tempère, S., Ségur.,
M. C., De Revel, G. (2023). Highlighting the varietal origin of eugenol in Armagnac wine spirit from Baco blanc, a hybrid grape variety. Food Chemistry (submitted)
2. Goupy, J. (2016). Modélisation par les plans d’expériences. Techniques de l’ingénieur. Mesures et contrôle., RB1(R275).
3. Gunata, Z., Dugelay, J., Sapis, J. C., Baumes, R., & Bayonove, C. (1993). Role of the enzyme in the use of the flavour potential from grape glycosides in wine making. 19 p. https://hal.inrae.fr/hal-02844337 
4. Sun, Q., Gates, M. J., Lavin, E. H., Acree, T. E., & Sacks, G. L. (2011). Comparison of Odor-Active Compounds in Grapes and Wines from Vitis vinifera and Non-Foxy American Grape Species. Journal of Agricultural and Food Chemistry, 59(19), 10657-10664. https://doi.org/10.1021/jf2026204

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Xavier Hastoy¹, Céline Franc¹, Laurent Riquier¹, Thierry Dufourcq² , Marie-Claude Ségur², Marc Fermaud³, Stéphanie Marchand¹ and Gilles de Revel¹

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Ornon, France
2. Institut Français de la Vigne et du Vin – V’Innopôle Sud-Ouest, 1920 Route de Lisle-sur-Tarn, 81310, Peyrole, France
3. Bureau National Interprofessionnel de l’Armagnac, F-32800 Eauze
4. INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

micro-vinifications, micro-distillations, spirits quality, phenylpropanoids

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].