terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Abstract

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.

First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups. They were characterised by varying degrees of positive, neutral and negative olfactory notes as well as the hedonic preference of the tasters.

For a targeted sensory improvement, a dealcoholised Riesling wine was processed using various oenological methods. Sweetening with grape juice obtained from a muscat variety enhanced fruity and floral aroma, which was backed by increasing concentrations of linalool, exceeding the sensory threshold. The addition of wooden chips imitated the character of a wine aged in barrels and stimulated higher preference ratings. A further improvement was tested by initiating a malolactic fermentation in the dealcoholised wines as well as a secondary alcoholic fermentation from 0 to 0.5 % vol. alc.. As dealcoholised wines lacks generally in body, mouthfeel and freshness due to the loss of ethanol, we explored the ability of yeast mannoproteins, carbonisation and prolonged yeast contact to improve these deficits. These variants were subjected to a descriptive analysis by a trained panel. It turned out that the tasters prefer-red wines with fruity and floral aroma, as well as a sweet, full-bodied taste. The use of grape juice as a sweetener, in combination with the ß-glycosidase activity to further release bound aroma compounds, as well as use of oak chips were the most successful treatments.

Modification of aroma compounds were investigated using a target HS-SPME-GC/MS-method for major wine aroma compounds. Fruity aromas were mainly linked to high concentrations of esters such as ethylbutanoate and ethylhexanoate and the floral notes with linalool and 2-phenylethanol. Especially addition of a grape juice instead of sucrose as well as use of ß-glycosidases yielded superior concentrations and sensory perception.

1. Deutsche Presse-Agentur (2021), „Bier, Wein oder Gin: Alkoholfreie Alternativen sind im Trend“, Die Zeit, 05.08.2021, available at https://www.zeit.de/news/2021-08/05/bier-wein-oder-gin-alkoholfreie-alternativen-sind-im-trend (accessed on 4. September 2022).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Lisa Käppler1, Jochen Vestner¹, Ulrich Fischer1,2

1. DLR Rheinpfalz, Neustadt/Weinstraße, Germany
2. RPTU Kaiserslautern-Landau, Kaiserslautern, Germany

Contact the author*

Keywords

dealcoholised wines, sensory properties, winemaking, product development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.