terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Abstract

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.

First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups. They were characterised by varying degrees of positive, neutral and negative olfactory notes as well as the hedonic preference of the tasters.

For a targeted sensory improvement, a dealcoholised Riesling wine was processed using various oenological methods. Sweetening with grape juice obtained from a muscat variety enhanced fruity and floral aroma, which was backed by increasing concentrations of linalool, exceeding the sensory threshold. The addition of wooden chips imitated the character of a wine aged in barrels and stimulated higher preference ratings. A further improvement was tested by initiating a malolactic fermentation in the dealcoholised wines as well as a secondary alcoholic fermentation from 0 to 0.5 % vol. alc.. As dealcoholised wines lacks generally in body, mouthfeel and freshness due to the loss of ethanol, we explored the ability of yeast mannoproteins, carbonisation and prolonged yeast contact to improve these deficits. These variants were subjected to a descriptive analysis by a trained panel. It turned out that the tasters prefer-red wines with fruity and floral aroma, as well as a sweet, full-bodied taste. The use of grape juice as a sweetener, in combination with the ß-glycosidase activity to further release bound aroma compounds, as well as use of oak chips were the most successful treatments.

Modification of aroma compounds were investigated using a target HS-SPME-GC/MS-method for major wine aroma compounds. Fruity aromas were mainly linked to high concentrations of esters such as ethylbutanoate and ethylhexanoate and the floral notes with linalool and 2-phenylethanol. Especially addition of a grape juice instead of sucrose as well as use of ß-glycosidases yielded superior concentrations and sensory perception.

1. Deutsche Presse-Agentur (2021), „Bier, Wein oder Gin: Alkoholfreie Alternativen sind im Trend“, Die Zeit, 05.08.2021, available at https://www.zeit.de/news/2021-08/05/bier-wein-oder-gin-alkoholfreie-alternativen-sind-im-trend (accessed on 4. September 2022).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Lisa Käppler1, Jochen Vestner¹, Ulrich Fischer1,2

1. DLR Rheinpfalz, Neustadt/Weinstraße, Germany
2. RPTU Kaiserslautern-Landau, Kaiserslautern, Germany

Contact the author*

Keywords

dealcoholised wines, sensory properties, winemaking, product development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).