terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Abstract

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.

First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups. They were characterised by varying degrees of positive, neutral and negative olfactory notes as well as the hedonic preference of the tasters.

For a targeted sensory improvement, a dealcoholised Riesling wine was processed using various oenological methods. Sweetening with grape juice obtained from a muscat variety enhanced fruity and floral aroma, which was backed by increasing concentrations of linalool, exceeding the sensory threshold. The addition of wooden chips imitated the character of a wine aged in barrels and stimulated higher preference ratings. A further improvement was tested by initiating a malolactic fermentation in the dealcoholised wines as well as a secondary alcoholic fermentation from 0 to 0.5 % vol. alc.. As dealcoholised wines lacks generally in body, mouthfeel and freshness due to the loss of ethanol, we explored the ability of yeast mannoproteins, carbonisation and prolonged yeast contact to improve these deficits. These variants were subjected to a descriptive analysis by a trained panel. It turned out that the tasters prefer-red wines with fruity and floral aroma, as well as a sweet, full-bodied taste. The use of grape juice as a sweetener, in combination with the ß-glycosidase activity to further release bound aroma compounds, as well as use of oak chips were the most successful treatments.

Modification of aroma compounds were investigated using a target HS-SPME-GC/MS-method for major wine aroma compounds. Fruity aromas were mainly linked to high concentrations of esters such as ethylbutanoate and ethylhexanoate and the floral notes with linalool and 2-phenylethanol. Especially addition of a grape juice instead of sucrose as well as use of ß-glycosidases yielded superior concentrations and sensory perception.

1. Deutsche Presse-Agentur (2021), „Bier, Wein oder Gin: Alkoholfreie Alternativen sind im Trend“, Die Zeit, 05.08.2021, available at https://www.zeit.de/news/2021-08/05/bier-wein-oder-gin-alkoholfreie-alternativen-sind-im-trend (accessed on 4. September 2022).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Lisa Käppler1, Jochen Vestner¹, Ulrich Fischer1,2

1. DLR Rheinpfalz, Neustadt/Weinstraße, Germany
2. RPTU Kaiserslautern-Landau, Kaiserslautern, Germany

Contact the author*

Keywords

dealcoholised wines, sensory properties, winemaking, product development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.