terclim by ICS banner
IVES 9 IVES Conference Series 9 CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Abstract

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood. This study aims to gain insights into the rate of change in Cu fractions and riboflavin concentrations during the exposure of white wine with different oxygen concentrations and/or different bottle colours to light over a period of days to months.

A Chardonnay wine with an addition of 0.5 mg/L riboflavin, 0.3 mg/L Cu and different concentrations of oxygen (10 and 0.5 mg/L) was exposed to fluorescent light at 20°C in Flint coloured bottles. The wine was also investigated using other coloured bottles (Arctic blue, French green, Antique green and Amber) with the minimum oxygen concentration. The Cu fractions were quantified using colorimetry and riboflavin concentrations measured by ultrahigh-performance liquid chromatography. The results showed that for wine in Flint bottles with low oxygen, light exposure accelerated the decrease in Cu fraction I and II, with the change in Cu fraction I being most pronounced (i.e., a 10-fold decrease in 24 hours). In contrast, high oxygen concentrations resulted in no light-induced decrease in Cu fractions I or II. Riboflavin concen-trations became depleted after only 20 hours of irradiation under high oxygen concentrations, while 0.07 mg/L remained in the wine with low oxygen. The darker coloured wine bottles slowed the changes observed for Cu fractions and riboflavin from a minimum period of hours (i.e., for Flint bottles) to a maxi-mum period of months (i.e., for Amber bottles). Although light is known to induce light-struck aroma in wine, this study has demonstrated it can also accelerate the removal of protective fractions of Cu and this has implications for the general reductive development of wine.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Isara Vongluanngam1,2,3*, Xinyi Zhang1,2, John W. Blackman1,2, Leigh Schmidtke1,2,3, Kerry L. Wilkinson3,4, Andrew C. Clark1,2,3

1. School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2. Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
3. The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide (Waite Campus), South Australia 5064
4. Discipline of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Aus-tralia

Contact the author*

Keywords

Riboflavin, Cu fractions, Wine bottle colour, Photo-degradation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).