terclim by ICS banner
IVES 9 IVES Conference Series 9 NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Abstract

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴ In our study, we found elevated concentrations of benzenethiols in smoke-impacted wines. 13C-labelled smoke data suggests phenol conversion into benzenethiol. A follow-up sensory experiment showed that the ashy aftertaste of smoke-impacted wines can be replicated by adding elevated amounts of benzenethiols and phenols to a wine that was previously not influenced by smoke. The novel targets could lead to better fining methods to remove the unwanted benzenethiols to achieve the flavors and aromas desired by winemakers and consumers.

1. Total Wildland Fires and Acres (1983-2021). (n.d.). National Interagency Fire Center. Retrieved September 1, 2022, from https://www.nifc.gov/fire-information/statistics
2. Grazzi-Soncini, G. Wine: Classification, Tasting, Qualities, and Defects. 1892. A.J. Johnston, Supt. State Printing. California, United States.
3. Adams, A. (2021, January 20). 2020 Fires Caused $3.7 billion in losses for Wine Industry. Wine Business.
4. Kennison, K., Wilkinson, K. L., Williams, H., Smith, J., & Gibberd, M. (2007). Smoke-derived Taint in Wine: Effect of Postharvest Smoke Exposure of Grapes on the Chemical Composition and Sensory Characteristics of Wine. Journal of Agricultural and Food Chemistry, 55(46), 10897–10901.

 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Elizabeth Tomasino1, Léa Delcros1,2,3, Sylvie Collas2, Marion Hervé1, Bruno Blondin3, Aurélie Roland3*

1. MHCS, Epernay, France
2. Comité Champagne, Epernay, France
3. SPO, Univ Montpellier INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

smoke, guaiacol, sensory, benzenethiol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine. The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].