terclim by ICS banner
IVES 9 IVES Conference Series 9 CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

Abstract

The spoilage yeast Brettanomyces bruxellensis presents many strain dependent characteristics, particularly sulfur tolerance (1). Climate change and the evolution of oenological practices are at the origin of matrices with low levels of sulfur dioxide and higher pH. These parameters favor the development of this yeast and lead to serious financial losses for winemakers (2). Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, to make analysis even faster, we further investigated the correlation between genetic groups previously described (3) and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained and allowed the discrimination of B. bruxellensis isolates in 4 of the 6 genetic groups (GG), with an accuracy of 96.6% (4). Future works will have to be done for the no tested genetic groups. But already these results confirm the possibility to develop a tool allowing to determine the tolerance of a contaminant, in a short time, in order to help wine industry professionals to choose the appropriate corrective measure.

 

1. Avramova M, Cibrario A, Peltier E, Coton M, Coton E, Schacherer J, Spano G, Capozzi V, Blaiotta G,  Salin F, Dols-Lafargue M, Grbin P, Curtin C, AlbertinW, Masneuf-Pomarede I (2018) Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136. https://doi.org/10.1038/s41598-018-
2. Alston J, Arvik T, Hart J. Lapsley JT (2021) Brettanomics I: The Cost of Brettanomyces in California Wine ProductionJournal of Wine Economics, Volume 16, Number 1, 2021, Pages 4–31 doi:10.1017/jwe.2020.20 
3. Lebleux M*, Abdo H*, Coelho C, Basmaciyan L, Albertin W, Maupeu J, Laurent J, Roullier-Gall C, Alexandre H, Guilloux-Benatier M, Weidmann S, Rousseaux S (2020) New advances on the Brettanomyces bruxellensis biofilm mode of life. Int J Food Microbiol, 318, pp.1084642. DOI : 10.1016/j.ijfoodmicro.2019.108464 
4. Lebleux M, Denimal E, De Oliveira D, Marin A, Desroche N, Alexandre H, Weidmann S, Rousseaux S (2021) Prediction of genetic groups within Brettanomyces bruxellensis through cell morphology using a deep learning tool in press J. Fungi, 7(8):581 https://doi.org/10.3390/jof7080581 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sandrine Rousseaux1, Manon Lebleux1, Emmanuel Denimal2, Stéphanie Weidmann 1

1. Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France
2. AgroSup Dijon, Direction Scientifique, Appui à la Recherche, 26 Boulevard Docteur Petitjean, F-21000 Dijon, France

Contact the author*

Keywords

Brettanomyces bruxellensis, deep learning, cell morphology, genetic groups

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).