terclim by ICS banner
IVES 9 IVES Conference Series 9 BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

Abstract

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to charac-terize from a sensory point of view, specific aromas of wines without added SO₂ and to identify com-pounds involved.

First, sensory profile were established for wines produced from the same merlot grapes with or wit-hout SO₂ addition throughout all winemaking process². This led to demonstrate that wine without added SO₂ was perceived differently than the wine with added SO₂ with a specific fruity aroma and a higher coolness. Moreover, to validate that presence of free SO₂ was not only at the origin of these differences, triangle tests were also performed from these wines.

In a second step, targeted analyses were performed on compounds known to be impacted by SO₂ and/or with specific impact on fruity aroma. Thus, acetaldehyde, diacetyl, and methyl salicylate, previously identified by a sensory target approach³, were studied. These quantification approaches allowed to ob-serve that wines without added SO₂ presented free acetaldehyde, higher concentrations in methyl sali-cylate and lower concentrations of free and total diacetyl. Based on these results, sensory characterization of these compounds in wines without added SO₂, and considering the impact of SO₂ were done using sensory profile. This allowed to show that presence of methyl salicylate, acetaldehyde and/or free SO₂ modified perception of coolness, whereas diacetyl and methyl salicylate modified fruity aroma.

Finally, experimental wine produced from the same grapes respectively with and without SO₂ addition were supplemented, according to their compositional specificities, with SO₂ and diacetyl for the wine without added SO₂ and with methyl salicylate for that one with added SO₂. These two supplemented wines were compared by triangle test and were perceived differently, thus underlined that differences between red wine produced with and without added SO₂ from Bordeaux involve other compounds than those considered here and suggests that further investigations are needed.

 

1. Pelonnier-Magimel, E.; Mangiorou, P.; Philippe, D.; Revel, G. de; Jourdes, M.; Marchal, A.; Marchand, S.; Pons, A.; Riquier, L.; Teissedre, P.-L.; Thibon, C.; Lytra, G.; Tempère, S.; Barbe, J.-C. Sensory Characterisation of Bordeaux Red Wines Produced without Added Sulfites. OENO One 2020, 54 (4), 733–743. 
2. Pelonnier-Magimel, E.; Windholtz, S.; Pomarède, I. M.; Barbe, J.-C. Sensory Characterisation of Wines without Added Sul-fites via Specific and Adapted Sensory Profile. OENO One 2020, 54 (4), 671–685. 
3. Pelonnier-Magimel, E.; Lytra, G.; Franc, C.; Farris, L.; Darriet, P.; Barbe, J.-C. Methyl Salicylate, an Odor-Active Compound in Bordeaux Red Wines Produced without Sulfites Addition. J. Agric. Food Chem. 2022, 70 (39), 12587–12595.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Edouard Pelonnier-Magimel1,2, Sara Windholtz1,2, Georgia Lytra1,2, Margaux Cameleyre1,2, Laurent Riquier1,2, Isabelle Masneuf-Pomarède1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wines without added sulfites, Methyl salicylate, Carbonyl compounds, Sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.