terclim by ICS banner
IVES 9 IVES Conference Series 9 BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

Abstract

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to charac-terize from a sensory point of view, specific aromas of wines without added SO₂ and to identify com-pounds involved.

First, sensory profile were established for wines produced from the same merlot grapes with or wit-hout SO₂ addition throughout all winemaking process². This led to demonstrate that wine without added SO₂ was perceived differently than the wine with added SO₂ with a specific fruity aroma and a higher coolness. Moreover, to validate that presence of free SO₂ was not only at the origin of these differences, triangle tests were also performed from these wines.

In a second step, targeted analyses were performed on compounds known to be impacted by SO₂ and/or with specific impact on fruity aroma. Thus, acetaldehyde, diacetyl, and methyl salicylate, previously identified by a sensory target approach³, were studied. These quantification approaches allowed to ob-serve that wines without added SO₂ presented free acetaldehyde, higher concentrations in methyl sali-cylate and lower concentrations of free and total diacetyl. Based on these results, sensory characterization of these compounds in wines without added SO₂, and considering the impact of SO₂ were done using sensory profile. This allowed to show that presence of methyl salicylate, acetaldehyde and/or free SO₂ modified perception of coolness, whereas diacetyl and methyl salicylate modified fruity aroma.

Finally, experimental wine produced from the same grapes respectively with and without SO₂ addition were supplemented, according to their compositional specificities, with SO₂ and diacetyl for the wine without added SO₂ and with methyl salicylate for that one with added SO₂. These two supplemented wines were compared by triangle test and were perceived differently, thus underlined that differences between red wine produced with and without added SO₂ from Bordeaux involve other compounds than those considered here and suggests that further investigations are needed.

 

1. Pelonnier-Magimel, E.; Mangiorou, P.; Philippe, D.; Revel, G. de; Jourdes, M.; Marchal, A.; Marchand, S.; Pons, A.; Riquier, L.; Teissedre, P.-L.; Thibon, C.; Lytra, G.; Tempère, S.; Barbe, J.-C. Sensory Characterisation of Bordeaux Red Wines Produced without Added Sulfites. OENO One 2020, 54 (4), 733–743. 
2. Pelonnier-Magimel, E.; Windholtz, S.; Pomarède, I. M.; Barbe, J.-C. Sensory Characterisation of Wines without Added Sul-fites via Specific and Adapted Sensory Profile. OENO One 2020, 54 (4), 671–685. 
3. Pelonnier-Magimel, E.; Lytra, G.; Franc, C.; Farris, L.; Darriet, P.; Barbe, J.-C. Methyl Salicylate, an Odor-Active Compound in Bordeaux Red Wines Produced without Sulfites Addition. J. Agric. Food Chem. 2022, 70 (39), 12587–12595.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Edouard Pelonnier-Magimel1,2, Sara Windholtz1,2, Georgia Lytra1,2, Margaux Cameleyre1,2, Laurent Riquier1,2, Isabelle Masneuf-Pomarède1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wines without added sulfites, Methyl salicylate, Carbonyl compounds, Sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.