terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

Abstract

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their num- ber and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

The aim of this work is to identify some plant biopolymers, other than Acacia senegal gum, allowing the colloidal stability of the coloring matter of red wines, and satisfying the technical (solubility and non-clogging) and sensory requirements of wine making. The selected plant biopolymers should also significantly improve the coloring matter colloidal stability.

Nine natural different plant biopolymers were used in this study. Their biochemical composition (protein and carbohydrate contents, amino acids and sugar compositions) and structural properties (Molar mass, polydispersity and intrinsic viscosity) were characterized. The colloidal stability proper- ties of all biopolymers were evaluated in comparison to Acacia senegal gum on three different matrices: a mineral-hydro-alcoholic solution corresponding to the test recommended by the oenological codex (COEI-1-GOMARA:2000), a hydro-alcoholic-grape marc solution, and unstable red wines.

The use of nine natural different plant biopolymers allowed to identify their intrinsic biochemical and structural properties essential for the colloidal stability of the coloring mater. Among these nine plant biopolymers, one of them presents interesting colloidal stabilization properties towards the coloring matter. This plant biopolymer possesses superior colloidal stability properties than Acacia senegal gum and good clogging index. Its quantity in red wines can be reduced between 5 and 10 while maintaining the colloidal stability of the coloring matter and allowing the filtration of red wines. This increased effi- ciency towards the colloidal stability of the coloring is correlated to the intrinsic biochemical and struc- tural properties of this exudate. This natural exudate could therefore be of interest for its use in enology.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Maria Antonieta Anaya-Castro1,2, Thierry Doco², Pascale Williams², Céline Charbonnel¹, Virginie Moine³, Arnaud Massot³, Phi-lippe Louazil³, Isabelle Jaouen⁴, Christian Sanchez¹ and Michaël Nigen¹

1. UMR1208 Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier-INRAE- Institut Agro Mont-pellier Supagro, 2 Place Pierre Viala, F-34060, Montpellier, France
2. UMR 1083 Science Pour l’Œnologie, INRAE- Institut Agro Montpellier Supagro-Université Montpellier, 2 Place Pierre Viala, F-34060, Montpellier, France
3. BIOLAFFORT, 11 rue Aristide Bergès, 33270 Floirac, France
4. ALLAND & ROBERT, ZAC des Champs Chouette – Rue du Bois Saint Paul – 27600 Saint Aubin Sur Gaillon, France

Contact the author*

Keywords

Plant exudate, Coloring matter, Colloidal stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.