terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

Abstract

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their num- ber and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

The aim of this work is to identify some plant biopolymers, other than Acacia senegal gum, allowing the colloidal stability of the coloring matter of red wines, and satisfying the technical (solubility and non-clogging) and sensory requirements of wine making. The selected plant biopolymers should also significantly improve the coloring matter colloidal stability.

Nine natural different plant biopolymers were used in this study. Their biochemical composition (protein and carbohydrate contents, amino acids and sugar compositions) and structural properties (Molar mass, polydispersity and intrinsic viscosity) were characterized. The colloidal stability proper- ties of all biopolymers were evaluated in comparison to Acacia senegal gum on three different matrices: a mineral-hydro-alcoholic solution corresponding to the test recommended by the oenological codex (COEI-1-GOMARA:2000), a hydro-alcoholic-grape marc solution, and unstable red wines.

The use of nine natural different plant biopolymers allowed to identify their intrinsic biochemical and structural properties essential for the colloidal stability of the coloring mater. Among these nine plant biopolymers, one of them presents interesting colloidal stabilization properties towards the coloring matter. This plant biopolymer possesses superior colloidal stability properties than Acacia senegal gum and good clogging index. Its quantity in red wines can be reduced between 5 and 10 while maintaining the colloidal stability of the coloring matter and allowing the filtration of red wines. This increased effi- ciency towards the colloidal stability of the coloring is correlated to the intrinsic biochemical and struc- tural properties of this exudate. This natural exudate could therefore be of interest for its use in enology.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Maria Antonieta Anaya-Castro1,2, Thierry Doco², Pascale Williams², Céline Charbonnel¹, Virginie Moine³, Arnaud Massot³, Phi-lippe Louazil³, Isabelle Jaouen⁴, Christian Sanchez¹ and Michaël Nigen¹

1. UMR1208 Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier-INRAE- Institut Agro Mont-pellier Supagro, 2 Place Pierre Viala, F-34060, Montpellier, France
2. UMR 1083 Science Pour l’Œnologie, INRAE- Institut Agro Montpellier Supagro-Université Montpellier, 2 Place Pierre Viala, F-34060, Montpellier, France
3. BIOLAFFORT, 11 rue Aristide Bergès, 33270 Floirac, France
4. ALLAND & ROBERT, ZAC des Champs Chouette – Rue du Bois Saint Paul – 27600 Saint Aubin Sur Gaillon, France

Contact the author*

Keywords

Plant exudate, Coloring matter, Colloidal stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.