terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

Abstract

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their num- ber and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

The aim of this work is to identify some plant biopolymers, other than Acacia senegal gum, allowing the colloidal stability of the coloring matter of red wines, and satisfying the technical (solubility and non-clogging) and sensory requirements of wine making. The selected plant biopolymers should also significantly improve the coloring matter colloidal stability.

Nine natural different plant biopolymers were used in this study. Their biochemical composition (protein and carbohydrate contents, amino acids and sugar compositions) and structural properties (Molar mass, polydispersity and intrinsic viscosity) were characterized. The colloidal stability proper- ties of all biopolymers were evaluated in comparison to Acacia senegal gum on three different matrices: a mineral-hydro-alcoholic solution corresponding to the test recommended by the oenological codex (COEI-1-GOMARA:2000), a hydro-alcoholic-grape marc solution, and unstable red wines.

The use of nine natural different plant biopolymers allowed to identify their intrinsic biochemical and structural properties essential for the colloidal stability of the coloring mater. Among these nine plant biopolymers, one of them presents interesting colloidal stabilization properties towards the coloring matter. This plant biopolymer possesses superior colloidal stability properties than Acacia senegal gum and good clogging index. Its quantity in red wines can be reduced between 5 and 10 while maintaining the colloidal stability of the coloring matter and allowing the filtration of red wines. This increased effi- ciency towards the colloidal stability of the coloring is correlated to the intrinsic biochemical and struc- tural properties of this exudate. This natural exudate could therefore be of interest for its use in enology.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Maria Antonieta Anaya-Castro1,2, Thierry Doco², Pascale Williams², Céline Charbonnel¹, Virginie Moine³, Arnaud Massot³, Phi-lippe Louazil³, Isabelle Jaouen⁴, Christian Sanchez¹ and Michaël Nigen¹

1. UMR1208 Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier-INRAE- Institut Agro Mont-pellier Supagro, 2 Place Pierre Viala, F-34060, Montpellier, France
2. UMR 1083 Science Pour l’Œnologie, INRAE- Institut Agro Montpellier Supagro-Université Montpellier, 2 Place Pierre Viala, F-34060, Montpellier, France
3. BIOLAFFORT, 11 rue Aristide Bergès, 33270 Floirac, France
4. ALLAND & ROBERT, ZAC des Champs Chouette – Rue du Bois Saint Paul – 27600 Saint Aubin Sur Gaillon, France

Contact the author*

Keywords

Plant exudate, Coloring matter, Colloidal stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.