terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

Abstract

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their num- ber and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

The aim of this work is to identify some plant biopolymers, other than Acacia senegal gum, allowing the colloidal stability of the coloring matter of red wines, and satisfying the technical (solubility and non-clogging) and sensory requirements of wine making. The selected plant biopolymers should also significantly improve the coloring matter colloidal stability.

Nine natural different plant biopolymers were used in this study. Their biochemical composition (protein and carbohydrate contents, amino acids and sugar compositions) and structural properties (Molar mass, polydispersity and intrinsic viscosity) were characterized. The colloidal stability proper- ties of all biopolymers were evaluated in comparison to Acacia senegal gum on three different matrices: a mineral-hydro-alcoholic solution corresponding to the test recommended by the oenological codex (COEI-1-GOMARA:2000), a hydro-alcoholic-grape marc solution, and unstable red wines.

The use of nine natural different plant biopolymers allowed to identify their intrinsic biochemical and structural properties essential for the colloidal stability of the coloring mater. Among these nine plant biopolymers, one of them presents interesting colloidal stabilization properties towards the coloring matter. This plant biopolymer possesses superior colloidal stability properties than Acacia senegal gum and good clogging index. Its quantity in red wines can be reduced between 5 and 10 while maintaining the colloidal stability of the coloring matter and allowing the filtration of red wines. This increased effi- ciency towards the colloidal stability of the coloring is correlated to the intrinsic biochemical and struc- tural properties of this exudate. This natural exudate could therefore be of interest for its use in enology.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Maria Antonieta Anaya-Castro1,2, Thierry Doco², Pascale Williams², Céline Charbonnel¹, Virginie Moine³, Arnaud Massot³, Phi-lippe Louazil³, Isabelle Jaouen⁴, Christian Sanchez¹ and Michaël Nigen¹

1. UMR1208 Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier-INRAE- Institut Agro Mont-pellier Supagro, 2 Place Pierre Viala, F-34060, Montpellier, France
2. UMR 1083 Science Pour l’Œnologie, INRAE- Institut Agro Montpellier Supagro-Université Montpellier, 2 Place Pierre Viala, F-34060, Montpellier, France
3. BIOLAFFORT, 11 rue Aristide Bergès, 33270 Floirac, France
4. ALLAND & ROBERT, ZAC des Champs Chouette – Rue du Bois Saint Paul – 27600 Saint Aubin Sur Gaillon, France

Contact the author*

Keywords

Plant exudate, Coloring matter, Colloidal stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.