terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Abstract

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits. Barrel toasting is probably the most important step in barrel manufacturing, as it influences oak wood chemical composition, which is then likely to migrate into the wine and spirits during ageing, affecting their organoleptic properties. From a sensory point of view, no studies have been conducted focusing on the influence of barrel toasting on Cognac eaux-de-vie. Therefore, the aim of our study is to perform a sensory characterization of Cognac eaux-de-vie aged for 12 months in barrels representing different toasting levels. Eight eaux-de-vie aged in barrels with 8 different toastings were studied. The 8 toastings represented 4 different temperatures (low, medium, medium plus and high) and two toasting lengths for each temperature (one so-called “normal” and the other “slow”). Sensory analysis was carried out on these eaux-de-vie through several tests. First, a sor- ting test showed the differences between the samples and then training was carried out on previously chosen descriptors in order to build a sensory profile and perform a ranking test. The study was realised at an alcohol level of 40 % (v/v), which is the alcohol level of a commercial Cognac. The results showed that the eaux-de-vie are strongly impacted by the toasting of the barrel during the first year of ageing and it is possible to differenciate them according to the toasting used. Light barrel toasting results in significantly different eaux-de-vie from those aged in high-toast barrels. The latter tends to result in high quality eaux-de-vie. This study is a first step in the characterisation of Cognac eaux-de-vie aged in barrels made with different toastings and can lead to practical recommendations in order to obtain the ideal toasting temperatures that give the best olfactory and gustatory profiles in eaux-de-vie.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mathilde GADRAT1,2,3, Catherine EMO3, Joël LAVERGNE3, Pierre-Louis TEISSEDRE1,2, Kléopatra CHIRA1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Maison Courvoisier, 2 place du château, 16200 Jarnac

Contact the author*

Keywords

Cognac, Sensory analysis, Barrel toasting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.