terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Abstract

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits. Barrel toasting is probably the most important step in barrel manufacturing, as it influences oak wood chemical composition, which is then likely to migrate into the wine and spirits during ageing, affecting their organoleptic properties. From a sensory point of view, no studies have been conducted focusing on the influence of barrel toasting on Cognac eaux-de-vie. Therefore, the aim of our study is to perform a sensory characterization of Cognac eaux-de-vie aged for 12 months in barrels representing different toasting levels. Eight eaux-de-vie aged in barrels with 8 different toastings were studied. The 8 toastings represented 4 different temperatures (low, medium, medium plus and high) and two toasting lengths for each temperature (one so-called “normal” and the other “slow”). Sensory analysis was carried out on these eaux-de-vie through several tests. First, a sor- ting test showed the differences between the samples and then training was carried out on previously chosen descriptors in order to build a sensory profile and perform a ranking test. The study was realised at an alcohol level of 40 % (v/v), which is the alcohol level of a commercial Cognac. The results showed that the eaux-de-vie are strongly impacted by the toasting of the barrel during the first year of ageing and it is possible to differenciate them according to the toasting used. Light barrel toasting results in significantly different eaux-de-vie from those aged in high-toast barrels. The latter tends to result in high quality eaux-de-vie. This study is a first step in the characterisation of Cognac eaux-de-vie aged in barrels made with different toastings and can lead to practical recommendations in order to obtain the ideal toasting temperatures that give the best olfactory and gustatory profiles in eaux-de-vie.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mathilde GADRAT1,2,3, Catherine EMO3, Joël LAVERGNE3, Pierre-Louis TEISSEDRE1,2, Kléopatra CHIRA1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Maison Courvoisier, 2 place du château, 16200 Jarnac

Contact the author*

Keywords

Cognac, Sensory analysis, Barrel toasting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2 One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.