terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Abstract

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits. Barrel toasting is probably the most important step in barrel manufacturing, as it influences oak wood chemical composition, which is then likely to migrate into the wine and spirits during ageing, affecting their organoleptic properties. From a sensory point of view, no studies have been conducted focusing on the influence of barrel toasting on Cognac eaux-de-vie. Therefore, the aim of our study is to perform a sensory characterization of Cognac eaux-de-vie aged for 12 months in barrels representing different toasting levels. Eight eaux-de-vie aged in barrels with 8 different toastings were studied. The 8 toastings represented 4 different temperatures (low, medium, medium plus and high) and two toasting lengths for each temperature (one so-called “normal” and the other “slow”). Sensory analysis was carried out on these eaux-de-vie through several tests. First, a sor- ting test showed the differences between the samples and then training was carried out on previously chosen descriptors in order to build a sensory profile and perform a ranking test. The study was realised at an alcohol level of 40 % (v/v), which is the alcohol level of a commercial Cognac. The results showed that the eaux-de-vie are strongly impacted by the toasting of the barrel during the first year of ageing and it is possible to differenciate them according to the toasting used. Light barrel toasting results in significantly different eaux-de-vie from those aged in high-toast barrels. The latter tends to result in high quality eaux-de-vie. This study is a first step in the characterisation of Cognac eaux-de-vie aged in barrels made with different toastings and can lead to practical recommendations in order to obtain the ideal toasting temperatures that give the best olfactory and gustatory profiles in eaux-de-vie.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Mathilde GADRAT1,2,3, Catherine EMO3, Joël LAVERGNE3, Pierre-Louis TEISSEDRE1,2, Kléopatra CHIRA1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Maison Courvoisier, 2 place du château, 16200 Jarnac

Contact the author*

Keywords

Cognac, Sensory analysis, Barrel toasting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.