terclim by ICS banner
IVES 9 IVES Conference Series 9 HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

Abstract

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants inclu-ding clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vinifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg. Leaf removal in the bunch zone induced a significant increase of 32 % in eugenol at veraison, which was also associated with a significant decrease in B. cinerea infection in the vineyard. Eugenol, as a natural endogenous molecule of Baco blanc, is therefore an inducible compound. Very interestingly, in terms of fruit ontogenic resistance, a significant negative correlation was established between the technological maturity of berries and the total eugenol content in the berry skin. This correlation was observed on 3 plots and confirmed over several years (2021 and 2022): it therefore appears to be intrinsic to the biology of cv Baco blanc. Moreover, the temporal study of two forms of eugenol tends to hypothesise the effectiveness against B. cinerea of precursor forms of eugenol. Such bound forms are structures which are currently being researched in our laboratory. For all these reasons, eugenol appears to be a biochemical marker of ontogenic resistance in Baco blanc and presumably an important resistance factor in this old cv of renewed interest.

 

1. Franc, C., Riquier, L., Hastoy, X., Monsant, C., Noiville, P., Pelonnier-Magimel, E., Marchand-Marion, S., Tempère, S., Ségur., M. C., De Revel, G. (2023). Highlighting the varietal origin of eugenol in Armagnac wine spirit from Baco blanc, a hybrid grape variety. Food Chemistry (submitted)
2. Baco, F. (1925). Précis complet de viticulture moderne et de vinification : Mes meilleures vignes hybrides franco-americaines : leurs principaux caractères : les meilleurs moyens pour les multiplier, les planter, les tailler, les cultiver, les vinifier (Imprimeries Gounouilhou).
3. Kamatou, G. P., Vermaak, I., & Viljoen, A. M. (2012). Eugenol—From the Remote Maluku Islands to the International Market Place : A Review of a Remarkable and Versatile Molecule. Molecules, 17(6), 6953-6981. https://doi.org/10.3390/mole-cules17066953 
4. Olea, A., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E., & Carrasco, H. (2019). Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea. Molecules, 24(7), 1239. https://doi. org/10.3390/molecules24071239 
5. Paňitrur-De La Fuente, C., Valdés-Gómez, H., Roudet, J., Acevedo-Opazo, C., Verdugo-Vásquez, N., Araya-Alman, M., Lolas, M., Moreno, Y., & Fermaud, M. (2018). Classification of winegrape cultivars in Chile and France according to their susceptibility to Botrytis cinerea related to fruit maturity : Susceptibility of winegrape cultivars to Botrytis cinerea. Australian Journal of Grape and Wine Research, 24(2), 145-157. https://doi.org/10.1111/ajgw.12315

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Xavier Hastoy1, Anaïs Poirier2, Céline Franc1, Laurent Riquier1, Marie-Claude Ségur3, Gilles de Revel1 and Marc Fermaud3

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Ornon, France
2. INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France
3. Bureau National Interprofessionel de l’Armagnac, F-32800 Eauze

Contact the author*

Keywords

ontogeny, inducibility, resistant hybrid vine, phenylpropanoids

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.