terclim by ICS banner
IVES 9 IVES Conference Series 9 HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

Abstract

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants inclu-ding clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vinifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg. Leaf removal in the bunch zone induced a significant increase of 32 % in eugenol at veraison, which was also associated with a significant decrease in B. cinerea infection in the vineyard. Eugenol, as a natural endogenous molecule of Baco blanc, is therefore an inducible compound. Very interestingly, in terms of fruit ontogenic resistance, a significant negative correlation was established between the technological maturity of berries and the total eugenol content in the berry skin. This correlation was observed on 3 plots and confirmed over several years (2021 and 2022): it therefore appears to be intrinsic to the biology of cv Baco blanc. Moreover, the temporal study of two forms of eugenol tends to hypothesise the effectiveness against B. cinerea of precursor forms of eugenol. Such bound forms are structures which are currently being researched in our laboratory. For all these reasons, eugenol appears to be a biochemical marker of ontogenic resistance in Baco blanc and presumably an important resistance factor in this old cv of renewed interest.

 

1. Franc, C., Riquier, L., Hastoy, X., Monsant, C., Noiville, P., Pelonnier-Magimel, E., Marchand-Marion, S., Tempère, S., Ségur., M. C., De Revel, G. (2023). Highlighting the varietal origin of eugenol in Armagnac wine spirit from Baco blanc, a hybrid grape variety. Food Chemistry (submitted)
2. Baco, F. (1925). Précis complet de viticulture moderne et de vinification : Mes meilleures vignes hybrides franco-americaines : leurs principaux caractères : les meilleurs moyens pour les multiplier, les planter, les tailler, les cultiver, les vinifier (Imprimeries Gounouilhou).
3. Kamatou, G. P., Vermaak, I., & Viljoen, A. M. (2012). Eugenol—From the Remote Maluku Islands to the International Market Place : A Review of a Remarkable and Versatile Molecule. Molecules, 17(6), 6953-6981. https://doi.org/10.3390/mole-cules17066953 
4. Olea, A., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E., & Carrasco, H. (2019). Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea. Molecules, 24(7), 1239. https://doi. org/10.3390/molecules24071239 
5. Paňitrur-De La Fuente, C., Valdés-Gómez, H., Roudet, J., Acevedo-Opazo, C., Verdugo-Vásquez, N., Araya-Alman, M., Lolas, M., Moreno, Y., & Fermaud, M. (2018). Classification of winegrape cultivars in Chile and France according to their susceptibility to Botrytis cinerea related to fruit maturity : Susceptibility of winegrape cultivars to Botrytis cinerea. Australian Journal of Grape and Wine Research, 24(2), 145-157. https://doi.org/10.1111/ajgw.12315

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Xavier Hastoy1, Anaïs Poirier2, Céline Franc1, Laurent Riquier1, Marie-Claude Ségur3, Gilles de Revel1 and Marc Fermaud3

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Ornon, France
2. INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France
3. Bureau National Interprofessionel de l’Armagnac, F-32800 Eauze

Contact the author*

Keywords

ontogeny, inducibility, resistant hybrid vine, phenylpropanoids

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.