terclim by ICS banner
IVES 9 IVES Conference Series 9 HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

Abstract

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants inclu-ding clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vinifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg. Leaf removal in the bunch zone induced a significant increase of 32 % in eugenol at veraison, which was also associated with a significant decrease in B. cinerea infection in the vineyard. Eugenol, as a natural endogenous molecule of Baco blanc, is therefore an inducible compound. Very interestingly, in terms of fruit ontogenic resistance, a significant negative correlation was established between the technological maturity of berries and the total eugenol content in the berry skin. This correlation was observed on 3 plots and confirmed over several years (2021 and 2022): it therefore appears to be intrinsic to the biology of cv Baco blanc. Moreover, the temporal study of two forms of eugenol tends to hypothesise the effectiveness against B. cinerea of precursor forms of eugenol. Such bound forms are structures which are currently being researched in our laboratory. For all these reasons, eugenol appears to be a biochemical marker of ontogenic resistance in Baco blanc and presumably an important resistance factor in this old cv of renewed interest.

 

1. Franc, C., Riquier, L., Hastoy, X., Monsant, C., Noiville, P., Pelonnier-Magimel, E., Marchand-Marion, S., Tempère, S., Ségur., M. C., De Revel, G. (2023). Highlighting the varietal origin of eugenol in Armagnac wine spirit from Baco blanc, a hybrid grape variety. Food Chemistry (submitted)
2. Baco, F. (1925). Précis complet de viticulture moderne et de vinification : Mes meilleures vignes hybrides franco-americaines : leurs principaux caractères : les meilleurs moyens pour les multiplier, les planter, les tailler, les cultiver, les vinifier (Imprimeries Gounouilhou).
3. Kamatou, G. P., Vermaak, I., & Viljoen, A. M. (2012). Eugenol—From the Remote Maluku Islands to the International Market Place : A Review of a Remarkable and Versatile Molecule. Molecules, 17(6), 6953-6981. https://doi.org/10.3390/mole-cules17066953 
4. Olea, A., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E., & Carrasco, H. (2019). Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea. Molecules, 24(7), 1239. https://doi. org/10.3390/molecules24071239 
5. Paňitrur-De La Fuente, C., Valdés-Gómez, H., Roudet, J., Acevedo-Opazo, C., Verdugo-Vásquez, N., Araya-Alman, M., Lolas, M., Moreno, Y., & Fermaud, M. (2018). Classification of winegrape cultivars in Chile and France according to their susceptibility to Botrytis cinerea related to fruit maturity : Susceptibility of winegrape cultivars to Botrytis cinerea. Australian Journal of Grape and Wine Research, 24(2), 145-157. https://doi.org/10.1111/ajgw.12315

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Xavier Hastoy1, Anaïs Poirier2, Céline Franc1, Laurent Riquier1, Marie-Claude Ségur3, Gilles de Revel1 and Marc Fermaud3

1. Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, ŒNO, ISVV, F-33140 Villenave d’Ornon, France
2. INRAE, UMR SAVE, Bordeaux Science Agro, ISVV, F-33882, Villenave d’Ornon, France
3. Bureau National Interprofessionel de l’Armagnac, F-32800 Eauze

Contact the author*

Keywords

ontogeny, inducibility, resistant hybrid vine, phenylpropanoids

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.