OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Abstract

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions. Previous studies linking the effect of native microbial communities to sensory relevant aroma compounds with their interactive properties have been vastly unsuccessful to date. Partially because studies relied on relatively few isolated strains or chemical compounds, which may be not sufficient to fully understand this complex picture.

Native microbial communities from different Riesling vineyards were studied over multiple experiments during vinification as well as over a two-year to reveal their effects on chemical and sensory composition of spontaneously fermented Riesling wines.

We demonstrate that by combining modern untargeted high-throughput omics technologies and statistical approaches, it is possible to look into samples in situ in the actual natural environment. Our results indicate that both vineyard and winery microbial communities are found to play significant roles in wine. Microbial communities within the fermenting were strongly influenced by vineyard of origin.

These population dynamics are consequently translated into diverse sensory properties through sensory relevant chemical interactions. We found that both sensory and chemical compositions were heavily influenced by the microbial community composition during the vinification as well as the vineyard and the year. Such methodologies allow to find novel microbial and chemical patterns which could be further tested with targeted studies. In addition to deconstructing the microbial community composition in complex natural environment, we leverage on shotgun metagenomic data to undertake the functional analysis of the microbial community during wine fermentation. In the future, multiomics approaches will be essential for fully discovering the complexity of biological networks, where microbes, host and chemical compounds interact with human sensory perceptions. These developed approaches benefit any industry that works with complex biological interactions.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Kimmo SIREN Sarah Siu Tze Mak, M. Thomas P. Gilbert, Ulrich Fischer

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Co-penhagen, Denmark
Institute for Viticulture & Oenology, DLR Rheinpfalz, Neustadt/Wstr.,Germany

Contact the author

Keywords

Metagenomics, Metabarcoding, Chemical interactions, Machine learning 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Unraveling the mystery of 3SH: Quantifying glut-3SH-al and its bisulfite adduct in a range of white grape juice and wine samples

3-Sulfanylhexan-1-ol (3SH) is a key impact odorant of white wines such as Sauvignon Blanc. In particular, the varietal characters of Sauvignon Blanc, especially from Marlborough NZ, are strongly influenced by the concentrations of 3SH

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.