terclim by ICS banner
IVES 9 IVES Conference Series 9 PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Abstract

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced. In order to screen the different pesticides found in our study areas, it was first necessary to optimize the extraction procedure. Pesticide residues in plant matrices such as leaf or grape berry are regularly monitored at the ISVV using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction followed by LC-MS/MS analysis. A QuEChERS method was adapted based on previously published work in order to analyse honeybees and single hornets, for which the quantity of samples is limited. The method was improved using a zirconium-based sorbent for d-SPE, which is used to reduce the matrix effect in lipidic commodities. The performance of this developed method was evaluated for 42 pesticide residues. A significant matrix effect was however noted for some molecules, thus procedural calibration was used to quantify pesticide residues in real samples. Methodological developments and pesticide residue quantification results in various matrices will be presented.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Céline Franc1, Léa Tison2, Louisiane Burkart2, Alice Rouzes2, Gilles de Revel1 and Denis Thiéry2

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, Villenave d’Ornon, France
2. INRAE Bordeaux, UMR1065 SAVE, Villenave d’Ornon, France

Contact the author*

Keywords

analysis, pesticide contamination , QuEChERS, LC-MS/MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.