terclim by ICS banner
IVES 9 IVES Conference Series 9 PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Abstract

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced. In order to screen the different pesticides found in our study areas, it was first necessary to optimize the extraction procedure. Pesticide residues in plant matrices such as leaf or grape berry are regularly monitored at the ISVV using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction followed by LC-MS/MS analysis. A QuEChERS method was adapted based on previously published work in order to analyse honeybees and single hornets, for which the quantity of samples is limited. The method was improved using a zirconium-based sorbent for d-SPE, which is used to reduce the matrix effect in lipidic commodities. The performance of this developed method was evaluated for 42 pesticide residues. A significant matrix effect was however noted for some molecules, thus procedural calibration was used to quantify pesticide residues in real samples. Methodological developments and pesticide residue quantification results in various matrices will be presented.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Céline Franc1, Léa Tison2, Louisiane Burkart2, Alice Rouzes2, Gilles de Revel1 and Denis Thiéry2

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, Villenave d’Ornon, France
2. INRAE Bordeaux, UMR1065 SAVE, Villenave d’Ornon, France

Contact the author*

Keywords

analysis, pesticide contamination , QuEChERS, LC-MS/MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.