terclim by ICS banner
IVES 9 IVES Conference Series 9 ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

Abstract

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

This study aimed to characterize, from 2019 to 2021, 6 new fungus disease-tolerant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to V. vinifera Syrah. A gradient of WD was applied and followed by weekly measures of predawn water
potentials. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading, moment at which all grapes were harvested, as way to objectify the sampling date at a precise physiological landmark. Primary metabolites (glucose, fructose, tartrate, malate and yeast assimilable nitrogen) and main cations (K+, Mg2+, Ca2+, Na+, NH₄+) were assessed by HPLC and enzymatic methods. Secondary metabolites as anthocyanins and thiol precursors were assessed by HPLC-UV and LC-MS/MS, respectively.

Genotype was the main factor explaining the variations in metabolites and cation concentration in berries at the ripe stage. At the phloem unloading arrest, primary metabolites and main cation concentra-tions were the lowest in G14 and the highest in Floreal and Syrah. Regarding secondary metabolites, all genotypes showed higher values than the V. vinifera Syrah. Yet, the red hybrid 3176N emerged as the richest genotype in both anthocyanins and total thiol precursors, reaching values of 1609 mg/L and 539 µg/kg respectively. Despite the low contribution of WD to metabolite concentrations, it consistent-ly reduced the total accumulation of primary and secondary metabolites per berry and per plant, with different intensities depending on the genotype. Our results show that WD can ultimately reduce the production of metabolites per unit of fruit and per plant without significantly improving the concentration of compounds of interest in the grape.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luciana Wilhelm de Almeida1, 2, Anne Pellegrino2, Aurelie Roland3, Laetitia Mouls3, Hernan Ojeda1 and Laurent Torregrosa1, 2

1. UE Pech Rouge, INRAE, Gruissan, France 
2. UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
3. Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

water deficit, primary metabolism, anthocyanins, thiol precursors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.