terclim by ICS banner
IVES 9 IVES Conference Series 9 ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

Abstract

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

This study aimed to characterize, from 2019 to 2021, 6 new fungus disease-tolerant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to V. vinifera Syrah. A gradient of WD was applied and followed by weekly measures of predawn water
potentials. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading, moment at which all grapes were harvested, as way to objectify the sampling date at a precise physiological landmark. Primary metabolites (glucose, fructose, tartrate, malate and yeast assimilable nitrogen) and main cations (K+, Mg2+, Ca2+, Na+, NH₄+) were assessed by HPLC and enzymatic methods. Secondary metabolites as anthocyanins and thiol precursors were assessed by HPLC-UV and LC-MS/MS, respectively.

Genotype was the main factor explaining the variations in metabolites and cation concentration in berries at the ripe stage. At the phloem unloading arrest, primary metabolites and main cation concentra-tions were the lowest in G14 and the highest in Floreal and Syrah. Regarding secondary metabolites, all genotypes showed higher values than the V. vinifera Syrah. Yet, the red hybrid 3176N emerged as the richest genotype in both anthocyanins and total thiol precursors, reaching values of 1609 mg/L and 539 µg/kg respectively. Despite the low contribution of WD to metabolite concentrations, it consistent-ly reduced the total accumulation of primary and secondary metabolites per berry and per plant, with different intensities depending on the genotype. Our results show that WD can ultimately reduce the production of metabolites per unit of fruit and per plant without significantly improving the concentration of compounds of interest in the grape.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luciana Wilhelm de Almeida1, 2, Anne Pellegrino2, Aurelie Roland3, Laetitia Mouls3, Hernan Ojeda1 and Laurent Torregrosa1, 2

1. UE Pech Rouge, INRAE, Gruissan, France 
2. UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
3. Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

water deficit, primary metabolism, anthocyanins, thiol precursors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.