terclim by ICS banner
IVES 9 IVES Conference Series 9 ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

Abstract

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

This study aimed to characterize, from 2019 to 2021, 6 new fungus disease-tolerant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to V. vinifera Syrah. A gradient of WD was applied and followed by weekly measures of predawn water
potentials. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading, moment at which all grapes were harvested, as way to objectify the sampling date at a precise physiological landmark. Primary metabolites (glucose, fructose, tartrate, malate and yeast assimilable nitrogen) and main cations (K+, Mg2+, Ca2+, Na+, NH₄+) were assessed by HPLC and enzymatic methods. Secondary metabolites as anthocyanins and thiol precursors were assessed by HPLC-UV and LC-MS/MS, respectively.

Genotype was the main factor explaining the variations in metabolites and cation concentration in berries at the ripe stage. At the phloem unloading arrest, primary metabolites and main cation concentra-tions were the lowest in G14 and the highest in Floreal and Syrah. Regarding secondary metabolites, all genotypes showed higher values than the V. vinifera Syrah. Yet, the red hybrid 3176N emerged as the richest genotype in both anthocyanins and total thiol precursors, reaching values of 1609 mg/L and 539 µg/kg respectively. Despite the low contribution of WD to metabolite concentrations, it consistent-ly reduced the total accumulation of primary and secondary metabolites per berry and per plant, with different intensities depending on the genotype. Our results show that WD can ultimately reduce the production of metabolites per unit of fruit and per plant without significantly improving the concentration of compounds of interest in the grape.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luciana Wilhelm de Almeida1, 2, Anne Pellegrino2, Aurelie Roland3, Laetitia Mouls3, Hernan Ojeda1 and Laurent Torregrosa1, 2

1. UE Pech Rouge, INRAE, Gruissan, France 
2. UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
3. Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

water deficit, primary metabolism, anthocyanins, thiol precursors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.