terclim by ICS banner
IVES 9 IVES Conference Series 9 ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

Abstract

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

This study aimed to characterize, from 2019 to 2021, 6 new fungus disease-tolerant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to V. vinifera Syrah. A gradient of WD was applied and followed by weekly measures of predawn water
potentials. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading, moment at which all grapes were harvested, as way to objectify the sampling date at a precise physiological landmark. Primary metabolites (glucose, fructose, tartrate, malate and yeast assimilable nitrogen) and main cations (K+, Mg2+, Ca2+, Na+, NH₄+) were assessed by HPLC and enzymatic methods. Secondary metabolites as anthocyanins and thiol precursors were assessed by HPLC-UV and LC-MS/MS, respectively.

Genotype was the main factor explaining the variations in metabolites and cation concentration in berries at the ripe stage. At the phloem unloading arrest, primary metabolites and main cation concentra-tions were the lowest in G14 and the highest in Floreal and Syrah. Regarding secondary metabolites, all genotypes showed higher values than the V. vinifera Syrah. Yet, the red hybrid 3176N emerged as the richest genotype in both anthocyanins and total thiol precursors, reaching values of 1609 mg/L and 539 µg/kg respectively. Despite the low contribution of WD to metabolite concentrations, it consistent-ly reduced the total accumulation of primary and secondary metabolites per berry and per plant, with different intensities depending on the genotype. Our results show that WD can ultimately reduce the production of metabolites per unit of fruit and per plant without significantly improving the concentration of compounds of interest in the grape.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luciana Wilhelm de Almeida1, 2, Anne Pellegrino2, Aurelie Roland3, Laetitia Mouls3, Hernan Ojeda1 and Laurent Torregrosa1, 2

1. UE Pech Rouge, INRAE, Gruissan, France 
2. UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
3. Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

water deficit, primary metabolism, anthocyanins, thiol precursors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.