terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

Abstract

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines. During this research the prospect of foliar application of bio stimulants to improve the aromatic and polyphenolic potential of the grapes was investigated in two consecutive years, characterized by hot and dry summers. Two different products, prepared with specific fractions of inactivated yeasts, were compared, and applied in different points during veraison with two- or three-time application protocol. The experiment involved two cultivars cultivated in Tuscany, a white (Vermentino) and a red one (Sangiovese). Quali-quantitative determination of the aromatic composition of the grapes was carried out using GC-MS, whereas polyphenols in skins and seeds were analyzed by spectrophotometry and HPLC methods. The bio stimulants did not affect the vine yield, but higher berry weight and reduced sugar contents were noted at harvest in the grapes from treated with respect to the control vines. All treatments enhanced polyphenolic potential in berry skins of red grapes, whereas modifications on anthocyanins percentages and reduction of flavonols were also observed, suggesting a protective effect of the treatments against solar radiation stress. Moreover, grapes from treated vines differ significantly for the lower content of polyphenolic compounds in their seeds. As regards aroma precursors, three-time application triggered significantly higher contents for almost all chemical classes of aromatic precursors for Vermentino whereas all treatments enhanced the accumulation of terpenoids and benzenoids in the berries of San-giovese. Bio stimulants thus, improved the qualitative parameters of the grapes, but their effect was different based on the frequency and the timing of the application, the chemical class of the compounds and the cultivar examined. Further future investigation is necessary to optimize bio stimulant application to contrast stress conditions and improve grape quality.

 

1. Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14.
2. Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. Plants 2022, 11, 162. https://doi.org/10.3390/plants11020162
3. Asproudi, A., Petrozziello, M., Cavalletto, S., & Guidoni, S. (2016). Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate. Food chemistry, 211, 947-956. https://doi.org/10.1016/j.foodchem.2016.05.070
4. Asproudi, A., Ferrandino, A., Bonello, F., Vaudano, E., Pollon, M., & Petrozziello, M. (2018). Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food chemistry, 268, 143-152. https://doi.org/10.1016/j.foodchem.2018.06.069
5. D’Arcangelo, M.E.M.; Valentini, P.; Puccioni, S.; (2018). Evaluation of new products against grapevine Downy mildew. Atti Giornate Fitopatologiche, 2018, 2, 503-512.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Andriani Asproudi¹, Maurizio Petrozziello¹, Vasiliki Ragkousi¹, Mauro Eugenio Maria D’Arcangelo², Sergio Puccioni², Federica Bonello¹

1. CREA-VE: Council for Agricultural Research and Economics- Research centre for Viticulture and Enology
2. Via P. Micca 35, 14100 Asti, Italy
3. 2.CREA-VE: Council for Agricultural Research and Economics- Research centre for Viticulture and Enology
4. Viale Santa Margherita, 80 – 52100 Arezzo, Italy

Contact the author*

Keywords

aroma precursors, polyphenols, Vermentino, Sangiovese

Tags

IVES Conference Series | OENO Macrowine | oeno macrowine 2023

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.