terclim by ICS banner
IVES 9 IVES Conference Series 9 REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Abstract

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bo-died wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020. Three N application treatments were imposed from leaf development to verasion: The normal N treatment corresponding to the control (N2), reducing N application by half treatment and no N application treatment corresponding to N1 and N0, respectively. Individual phenolics were determined by UHPLC-MS/MS. The result showed that reducing N had si-gnificantly decreased shoot pruning weight and yield, but the effect on fruit ripening was depending on season. N reduction treatment significantly improved wine phenolic parameters including total pheno-lic, tannnins and anthocyanins, and enhanced most of individual anthocyanins, and some non-antho-cyanin phenolics especially stibenes including piceatannol, trans-resveratrol and polydatin, regardless of season. The overall results highlighted the importance of reducing N application during grape growing season in modifying wine phenolic profiles.

 

1. Yang Z. W., Wang S. Y., Qi P. Y., Zhang A., Li X., Wang F., Zhang J. J. (2019). Establishment of ultra-high performance liquid chromatographytandem mass spectrometry method for determination of 29 monophenols in wine[J]. Food Science, 40(24), 214-219. (in Chinese with English abstract)
2. Jin G., Yang Z. W., Wang S. Y., Ma W., Zhang J. J., Zhang A., Zhang J.X. Establishment of ultra performance liquid chromato-graphy-tandem mass spectrometry method for determination of 18 individual anthocyanins in wine[J]. Food Science, 2019, 40(18), 229-235. (in Chinese with English abstract)
3. Walker, H. V., Jones, J. E., Swarts, N. D., & Kerslake, F. (2022). Manipulating Nitrogen and Water Resources for Improved Cool Climate Vine to Wine Quality. American Journal of Enology and Viticulture, 73 (1), 11-25.
4. Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply afects anthocyanin biosynthe-tic and regulatory genes in rapevine cv Cabernet-Sauvignon berries. Phytochemistry 103:38–49.
5. Tian, T., Ruppel, M., Osborne, J., Tomasino, E., & Schreiner, R. P. (2022). Fertilize or Supplement: The Impact of Nitrogen on Vine Productivity and Wine Sensory Properties in Chardonnay. American Journal of Enology and Viticulture, 73 (3), 156-169

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jianqiang Song 1, 2, 3, Ang Zhang2, 4, Fei Gao³, Mingqing Li³, Xianhua Zhao⁵, Jie Zhang³, Genjie Wang³, Yuping Hou¹, Shiwei Cheng¹, Huige Qu¹, Shili Ruan³, Jiming Li³

1. School of Life Sciences, Ludong University, Yantai 264025, China
2. Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, China
3. Yantai Changyu Group Corporation Ltd., Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai 264001, China
4. Technology Centre of Qinhuangdao Customs, Qinhuangdao 066004, China
5. College of Life Sciences and Enology, Taishan University, Taian 271021, China

Contact the author*

Keywords

Cabernet Gernischt, Vitis vinifera, Nitrogen, Phenolic composition

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.