terclim by ICS banner
IVES 9 IVES Conference Series 9 REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Abstract

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bo-died wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020. Three N application treatments were imposed from leaf development to verasion: The normal N treatment corresponding to the control (N2), reducing N application by half treatment and no N application treatment corresponding to N1 and N0, respectively. Individual phenolics were determined by UHPLC-MS/MS. The result showed that reducing N had si-gnificantly decreased shoot pruning weight and yield, but the effect on fruit ripening was depending on season. N reduction treatment significantly improved wine phenolic parameters including total pheno-lic, tannnins and anthocyanins, and enhanced most of individual anthocyanins, and some non-antho-cyanin phenolics especially stibenes including piceatannol, trans-resveratrol and polydatin, regardless of season. The overall results highlighted the importance of reducing N application during grape growing season in modifying wine phenolic profiles.

 

1. Yang Z. W., Wang S. Y., Qi P. Y., Zhang A., Li X., Wang F., Zhang J. J. (2019). Establishment of ultra-high performance liquid chromatographytandem mass spectrometry method for determination of 29 monophenols in wine[J]. Food Science, 40(24), 214-219. (in Chinese with English abstract)
2. Jin G., Yang Z. W., Wang S. Y., Ma W., Zhang J. J., Zhang A., Zhang J.X. Establishment of ultra performance liquid chromato-graphy-tandem mass spectrometry method for determination of 18 individual anthocyanins in wine[J]. Food Science, 2019, 40(18), 229-235. (in Chinese with English abstract)
3. Walker, H. V., Jones, J. E., Swarts, N. D., & Kerslake, F. (2022). Manipulating Nitrogen and Water Resources for Improved Cool Climate Vine to Wine Quality. American Journal of Enology and Viticulture, 73 (1), 11-25.
4. Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply afects anthocyanin biosynthe-tic and regulatory genes in rapevine cv Cabernet-Sauvignon berries. Phytochemistry 103:38–49.
5. Tian, T., Ruppel, M., Osborne, J., Tomasino, E., & Schreiner, R. P. (2022). Fertilize or Supplement: The Impact of Nitrogen on Vine Productivity and Wine Sensory Properties in Chardonnay. American Journal of Enology and Viticulture, 73 (3), 156-169

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jianqiang Song 1, 2, 3, Ang Zhang2, 4, Fei Gao³, Mingqing Li³, Xianhua Zhao⁵, Jie Zhang³, Genjie Wang³, Yuping Hou¹, Shiwei Cheng¹, Huige Qu¹, Shili Ruan³, Jiming Li³

1. School of Life Sciences, Ludong University, Yantai 264025, China
2. Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, China
3. Yantai Changyu Group Corporation Ltd., Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai 264001, China
4. Technology Centre of Qinhuangdao Customs, Qinhuangdao 066004, China
5. College of Life Sciences and Enology, Taishan University, Taian 271021, China

Contact the author*

Keywords

Cabernet Gernischt, Vitis vinifera, Nitrogen, Phenolic composition

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.