terclim by ICS banner
IVES 9 IVES Conference Series 9 REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Abstract

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bo-died wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020. Three N application treatments were imposed from leaf development to verasion: The normal N treatment corresponding to the control (N2), reducing N application by half treatment and no N application treatment corresponding to N1 and N0, respectively. Individual phenolics were determined by UHPLC-MS/MS. The result showed that reducing N had si-gnificantly decreased shoot pruning weight and yield, but the effect on fruit ripening was depending on season. N reduction treatment significantly improved wine phenolic parameters including total pheno-lic, tannnins and anthocyanins, and enhanced most of individual anthocyanins, and some non-antho-cyanin phenolics especially stibenes including piceatannol, trans-resveratrol and polydatin, regardless of season. The overall results highlighted the importance of reducing N application during grape growing season in modifying wine phenolic profiles.

 

1. Yang Z. W., Wang S. Y., Qi P. Y., Zhang A., Li X., Wang F., Zhang J. J. (2019). Establishment of ultra-high performance liquid chromatographytandem mass spectrometry method for determination of 29 monophenols in wine[J]. Food Science, 40(24), 214-219. (in Chinese with English abstract)
2. Jin G., Yang Z. W., Wang S. Y., Ma W., Zhang J. J., Zhang A., Zhang J.X. Establishment of ultra performance liquid chromato-graphy-tandem mass spectrometry method for determination of 18 individual anthocyanins in wine[J]. Food Science, 2019, 40(18), 229-235. (in Chinese with English abstract)
3. Walker, H. V., Jones, J. E., Swarts, N. D., & Kerslake, F. (2022). Manipulating Nitrogen and Water Resources for Improved Cool Climate Vine to Wine Quality. American Journal of Enology and Viticulture, 73 (1), 11-25.
4. Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply afects anthocyanin biosynthe-tic and regulatory genes in rapevine cv Cabernet-Sauvignon berries. Phytochemistry 103:38–49.
5. Tian, T., Ruppel, M., Osborne, J., Tomasino, E., & Schreiner, R. P. (2022). Fertilize or Supplement: The Impact of Nitrogen on Vine Productivity and Wine Sensory Properties in Chardonnay. American Journal of Enology and Viticulture, 73 (3), 156-169

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jianqiang Song 1, 2, 3, Ang Zhang2, 4, Fei Gao³, Mingqing Li³, Xianhua Zhao⁵, Jie Zhang³, Genjie Wang³, Yuping Hou¹, Shiwei Cheng¹, Huige Qu¹, Shili Ruan³, Jiming Li³

1. School of Life Sciences, Ludong University, Yantai 264025, China
2. Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, China
3. Yantai Changyu Group Corporation Ltd., Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai 264001, China
4. Technology Centre of Qinhuangdao Customs, Qinhuangdao 066004, China
5. College of Life Sciences and Enology, Taishan University, Taian 271021, China

Contact the author*

Keywords

Cabernet Gernischt, Vitis vinifera, Nitrogen, Phenolic composition

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.