terclim by ICS banner
IVES 9 IVES Conference Series 9 REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Abstract

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bo-died wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020. Three N application treatments were imposed from leaf development to verasion: The normal N treatment corresponding to the control (N2), reducing N application by half treatment and no N application treatment corresponding to N1 and N0, respectively. Individual phenolics were determined by UHPLC-MS/MS. The result showed that reducing N had si-gnificantly decreased shoot pruning weight and yield, but the effect on fruit ripening was depending on season. N reduction treatment significantly improved wine phenolic parameters including total pheno-lic, tannnins and anthocyanins, and enhanced most of individual anthocyanins, and some non-antho-cyanin phenolics especially stibenes including piceatannol, trans-resveratrol and polydatin, regardless of season. The overall results highlighted the importance of reducing N application during grape growing season in modifying wine phenolic profiles.

 

1. Yang Z. W., Wang S. Y., Qi P. Y., Zhang A., Li X., Wang F., Zhang J. J. (2019). Establishment of ultra-high performance liquid chromatographytandem mass spectrometry method for determination of 29 monophenols in wine[J]. Food Science, 40(24), 214-219. (in Chinese with English abstract)
2. Jin G., Yang Z. W., Wang S. Y., Ma W., Zhang J. J., Zhang A., Zhang J.X. Establishment of ultra performance liquid chromato-graphy-tandem mass spectrometry method for determination of 18 individual anthocyanins in wine[J]. Food Science, 2019, 40(18), 229-235. (in Chinese with English abstract)
3. Walker, H. V., Jones, J. E., Swarts, N. D., & Kerslake, F. (2022). Manipulating Nitrogen and Water Resources for Improved Cool Climate Vine to Wine Quality. American Journal of Enology and Viticulture, 73 (1), 11-25.
4. Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply afects anthocyanin biosynthe-tic and regulatory genes in rapevine cv Cabernet-Sauvignon berries. Phytochemistry 103:38–49.
5. Tian, T., Ruppel, M., Osborne, J., Tomasino, E., & Schreiner, R. P. (2022). Fertilize or Supplement: The Impact of Nitrogen on Vine Productivity and Wine Sensory Properties in Chardonnay. American Journal of Enology and Viticulture, 73 (3), 156-169

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jianqiang Song 1, 2, 3, Ang Zhang2, 4, Fei Gao³, Mingqing Li³, Xianhua Zhao⁵, Jie Zhang³, Genjie Wang³, Yuping Hou¹, Shiwei Cheng¹, Huige Qu¹, Shili Ruan³, Jiming Li³

1. School of Life Sciences, Ludong University, Yantai 264025, China
2. Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, China
3. Yantai Changyu Group Corporation Ltd., Shandong Provincial Key Laboratory of Wine Microbial Fermentation Technology, Yantai 264001, China
4. Technology Centre of Qinhuangdao Customs, Qinhuangdao 066004, China
5. College of Life Sciences and Enology, Taishan University, Taian 271021, China

Contact the author*

Keywords

Cabernet Gernischt, Vitis vinifera, Nitrogen, Phenolic composition

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.