OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 When organic chemistry contributes to the understanding of metabolism mechanisms

When organic chemistry contributes to the understanding of metabolism mechanisms

Abstract

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

For 10 years, we developed several chemical strategies to obtain analytical standards either as labelled analogues or as diastereomers to develop SIDA and DIDA analytical methods, respectively. These quantification methods afforded accurate and reliable results by suppressing analytical bias due to sample preparation. Several examples will be presented from deuterated analogues: varietal thiols [1], thiol precursors [2], Ochratoxin A [3], and diastereoisomers: Ochratoxin A [4] and hydroxycinnamic acids [5].

Another interesting application based on synthetic compounds lies in their possible exploitation as tracers. Indeed, the scale-up and optimization of chemical syntheses from μg to mg levels provided us with substantial amounts of molecules that could be used in metabolism studies. For example, we recently used labelled thiol precursors as tracers in Sauvignon Blanc musts for metabolism studies. Degradation of such tracers was monitored to highlight several key interconversion mechanisms and bring new elements in varietal thiol biogenesis knowledge [6]. In these applications, the choice of the labelling position (for Ochratoxin A for instance) or multilabelling possibilies (for thiol precursors) offer future opportunity to investigate detoxification process or to obtain insight in the metabolism of aroma precursors, respectively.

References

1. a) A. Roland, R. Schneider, A. Razungles and F. Cavelier, Varietal thiols in wine: Discovery, Synthesis and Applications, Chem. Rev. 2011, 111, 7355. b) R. Schneider, Y. Kotseridis, J.-L. Ray, C. Augier and R.Baumes, Quantitative determination of sulfur-containing wine odorants at sub parts per billion levels.
2. Development and application of a stable isotope dilution assay, J. Agri. Food Chem., 2003, 51, 3243. 2. H.Bonnaffoux, A.Roland, E.Rémond, S.Delpech, R.Schneider, F.Cavelier, First identification and quantification of S-3- (hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable iso-tope dilution assay, Food Chem., 2017, 237, 877.
3. A.Bouisseau, A.Roland, R.Schneider and F.Cavelier, First Synthesis of a Stable Isotope of Ochratoxin A Metabolite for a Reliable Detoxification Monitoring, Org. Lett., 2013, 15, 3888.
4. A.Roland, P.Bros, A.Bouisseau, F.Cavelier and R.Schneider, Analysis of Ochratoxin A in musts and wines by LCMS/MS: Comparison of Stable Isotope Dilution Assay and Diastereomeric Dilution Assay Methods, Anal. Chim. Acta, 2014, 818, 39.
5. F. Cavelier, A. Roland, A. Bouisseau, J. Martinez, R. Schneider. Method for the esterification of polar molecules, WO 2015 011230
6. H. Bonnaffoux, S. Delpech, E. Rémond, R. Schneider, A. Roland, F. Cavelier, Revisiting the evaluation strategy of varietal thiol biogenesis, Food Chem., 2018, 268, 126.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Florine Cavelier Hugo Bonnaffoux, Anaïs Bouisseau, Stéphane Delpech, Aurélie Roland, Rémi Schneider

Université de Montpellier (France)

Contact the author

Keywords

organic chemistry, analytical chemistry, internal standards, aroma

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region.

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.