OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 When organic chemistry contributes to the understanding of metabolism mechanisms

When organic chemistry contributes to the understanding of metabolism mechanisms

Abstract

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

For 10 years, we developed several chemical strategies to obtain analytical standards either as labelled analogues or as diastereomers to develop SIDA and DIDA analytical methods, respectively. These quantification methods afforded accurate and reliable results by suppressing analytical bias due to sample preparation. Several examples will be presented from deuterated analogues: varietal thiols [1], thiol precursors [2], Ochratoxin A [3], and diastereoisomers: Ochratoxin A [4] and hydroxycinnamic acids [5].

Another interesting application based on synthetic compounds lies in their possible exploitation as tracers. Indeed, the scale-up and optimization of chemical syntheses from μg to mg levels provided us with substantial amounts of molecules that could be used in metabolism studies. For example, we recently used labelled thiol precursors as tracers in Sauvignon Blanc musts for metabolism studies. Degradation of such tracers was monitored to highlight several key interconversion mechanisms and bring new elements in varietal thiol biogenesis knowledge [6]. In these applications, the choice of the labelling position (for Ochratoxin A for instance) or multilabelling possibilies (for thiol precursors) offer future opportunity to investigate detoxification process or to obtain insight in the metabolism of aroma precursors, respectively.

References

1. a) A. Roland, R. Schneider, A. Razungles and F. Cavelier, Varietal thiols in wine: Discovery, Synthesis and Applications, Chem. Rev. 2011, 111, 7355. b) R. Schneider, Y. Kotseridis, J.-L. Ray, C. Augier and R.Baumes, Quantitative determination of sulfur-containing wine odorants at sub parts per billion levels.
2. Development and application of a stable isotope dilution assay, J. Agri. Food Chem., 2003, 51, 3243. 2. H.Bonnaffoux, A.Roland, E.Rémond, S.Delpech, R.Schneider, F.Cavelier, First identification and quantification of S-3- (hexan-1-ol)-γ-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable iso-tope dilution assay, Food Chem., 2017, 237, 877.
3. A.Bouisseau, A.Roland, R.Schneider and F.Cavelier, First Synthesis of a Stable Isotope of Ochratoxin A Metabolite for a Reliable Detoxification Monitoring, Org. Lett., 2013, 15, 3888.
4. A.Roland, P.Bros, A.Bouisseau, F.Cavelier and R.Schneider, Analysis of Ochratoxin A in musts and wines by LCMS/MS: Comparison of Stable Isotope Dilution Assay and Diastereomeric Dilution Assay Methods, Anal. Chim. Acta, 2014, 818, 39.
5. F. Cavelier, A. Roland, A. Bouisseau, J. Martinez, R. Schneider. Method for the esterification of polar molecules, WO 2015 011230
6. H. Bonnaffoux, S. Delpech, E. Rémond, R. Schneider, A. Roland, F. Cavelier, Revisiting the evaluation strategy of varietal thiol biogenesis, Food Chem., 2018, 268, 126.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Florine Cavelier Hugo Bonnaffoux, Anaïs Bouisseau, Stéphane Delpech, Aurélie Roland, Rémi Schneider

Université de Montpellier (France)

Contact the author

Keywords

organic chemistry, analytical chemistry, internal standards, aroma

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Distribution of photosynthates towards the grapes: effects of leaf removal and cluster thinning applied before veraison in cv. Verdejo

The relationship between grape production and leaf surface is a highly debated aspect in terms of the impact it may have on the composition and quality of grapes, especially in areas that focus their cultivation on high-quality wine. In many occasions, the limitation of the unitary production level in these areas is claimed to be the main factor for achieving high quality levels in the wine, forgetting the importance of the source-sink relationship and other environmental factors and management of the canopy. Taking this consideration into account, this work seeks to know the response of the vine as a whole, and the individual shoot as well, to the application of various alternatives of leaves and clusters removal, carried out in the phase immediately before veraison, in cv. Verdejo, in Spain.

Terroir, climat et sol

Le sol et le climat occupent une place prépondérante dans le concept de terroir, pour lequel l’OIV s’apprête à adopter une définition internationale. Les travaux de recherche qui ont été menés depuis une trentaine d’années sur ces thèmes et qui ont été, pour les plus importants, présentés dans les 7 premiers Congrès Internationaux des Terroirs Viticoles ont considérablement modifié les connaissances sur le fonctionnement des terroirs viticoles dans le monde et le comportement des consommateurs avertis par rapport aux vins de terroirs.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).