terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Abstract

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients. The study aims to assess the impact of progressive inoculation of Sc yeast during white wine fermentation at different stages: 24 h, 48 h, 72 h, 100 h, and 200 h after the initial inoculation of Hv yeast. The latter time point corresponds to the halfway of the fermentation process. The concentration of some yeast-derived aroma compounds was evaluated in wines by GC-MS/MS (2-phenylethyl alcohol, ß-phenylethyl acetate, isoamyl acetate and ethyl hexanoate) as indicators of the metabolic response of yeasts during fermentation. The 200 h protocol took an average 13 extra days to complete alcoholic fermentation compared to the pure Sc. The difference decreased as the moment of sequential inoculation neared, with a difference of ~4 days for the 24 h protocol. Regarding volatile compounds, the production of isolamyl acetate and ethyl hexanoate were higher in Sc wines respect to any Hv wines (up to 2.5-fold), for which it was found no significant differences between them. However, every Hv protocol was richer in ß-phenylethyl acetate. Interestingly, the 24 hour protocol produced the highest concentration (~11-fold than Sc) while the 200 h protocol showed the lowest (~8-fold), demonstrating a downward trend with respect to the time of Sc inoculation. Conversely, 2-phenylethanol concentration was higher in the 200 h protocol and it showed a positive correlation with reduced inoculation time. Results confirm the ability of Hv to change the aroma features of wines, increasing the rose-like scents that characterise ß-phenylethyl acetate. By reducing the delay in Sc inoculation, the performance of Hv became better aligned with industrial standards while also maintaining an increased production of ß-phenylethyl acetate.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adelaide Gallo1,2*, Mauro Paolini¹, Nicola Cappello¹, Francisco Carrau³, Rémi Schneider4 Roberto Larcher¹, Tomas Roman¹

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
3. Seccion Enología, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
4. Oenobrands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-CS 34603, CEDEX 05, 34397 Montpellier, France

Contact the author*

Keywords

Hanseniaspora vineae, non-Saccharomyces, sequential inoculation, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.