terclim by ICS banner
IVES 9 IVES Conference Series 9 DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Abstract

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoho-lic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

While some non-Saccharomyces species have been found to affect the chemical composition of wine, their low fermentation ability limits their usefulness, as they are unable to fully metabolize the sugars in the grape juice and produce only small amounts of ethanol. However, non-Saccharomyces strains have several oenological properties that are fundamental for the organoleptic properties of wine. As a result, the use of mixed non-Saccharomyces/Saccharomyces fermentation can be a valid alternative to spontaneous fermentation, as it can mimic natural biodiversity and increase the organoleptic properties of wine while minimizing microbial alterations.

The objectives of this work were to prospect and precisely identify genetically yeasts (more than 300 strains) of interest for the production of fermented beverages using an innovative protocol in several Swiss vineyards, establish a methodology to phenotypically characterize the isolated yeasts, and develop a procedure to assist winegrowers in their use of mixed saccharomyces and non-saccharomyces yeasts.

 

1. Bely, M., Stoeckle, P., Masneuf-Pomarède, I., Dubourdieu, D., 2008. Impact of mixed Torulaspora delbrueckii–Saccharomyces cerevisiae culture on high-sugar fermentation. Int. J. Food Microbiol. 122 (3), 312–320.
2. Börlin, M., Miot-Sertier, C., Vinsonneau, E., Becquet, S., Salin, F., Bely, M., Lucas, P., Albertin, W., Legras, J.-L., & Masneuf-Po-marède, I. (2020). The “pied de cuve” as an alternative way to manage indigenous fermentation: impact on the fermentative process and Saccharomyces cerevisiae diversity. OENO One, 54(3), 335–342.
3. Capozzi V., Garofalo C., Assunta Chiriatti M., Grieco F., Spano G. 2015 Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiological Research 181 (2015) 75–83
4. Domizio, P., Romani, C., Lencioni, L., Comitini, F., Gobbi, M., Mannazzu, I., et al.,2011. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int. J. Food Microbiol. 147 (3), 170–180.
5. Pretorius I.S., 2020. Tasting the terroir of wine yeast innovation, FEMS Yeast Research,  20 (1).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Benoit Bach1 , Yannick Barth², Corentin Descombes ², Scott Simonin¹, Marilyn Cléroux¹, Charles Chappuis¹, Lefort Francois².

1. CHANGINS – Haute École de Viticulture et Œnologie, 1260 HES-SO, Nyon, Vaud, Switzerland
2. HEPIA, 1254 Jussy, Geneva, Switzerland

Contact the author*

Keywords

yeast, bioprospection, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.