terclim by ICS banner
IVES 9 IVES Conference Series 9 FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

Abstract

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains. The Maraština sterile grape juice was inoculated with yeast isolates at a concentration of 10⁶ cells/mL in a laboratory flask. The fermentation process was monitored by psycho-chemical parameters and yeast cell counting on WL agar plates. Samples were analyzed by infrared spectroscopy with Fourier transformation (FTIR). Residual sugar after alcoholic fermentation was between 2.3 and 6.8 g/L for all species.

M. chrysoperlae was yeast first finished fermentation after 20 days. Production of volatile acidity was similar for all indigenous yeasts (0.55-0.68 g/L) except H. pseudoguillermonondii which produced 0.87 g/L of volatile acidity and the lowest level of ethanol (11.5 % vol). On the other side, M. sinensis produced wines with the highest level of ethanol (12.7 % vol) and with low concentrations of malic acid. Fermentation with H. pseudoburtonii showed the highest level of lactic acid, 0.67 g/L. The obtained results allow the selection of yeasts for further research in the selection of potential starter cultures for creating a wine with regional character.
1. Whitener, M.E.B., Stanstrup, J., Carlin, S., Divol, B., Toit, M.D., Vrhovšek, U. (2017). Effect of non-Saccharomyces yeast on the volatile chemical profile of Shiraz wine. Australian Journal of Grape and Wine Research. 23, 179–192.
2. Man-Hsi Lin, M., Boss, K.P., Walker, E.M., Sumby, M.K., Grbin, R.P., Jiranek, V. (2020). Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. International Journal of Food Microbiology. 312,108373, 1-12.
3. Milanović, V., Cardinali, F., Ferrocino, I., Boban, A., Franciosa, I., Gajdoš Kljusurić, J., Mucalo, A., Osimani, A., Aquilanti, L., Garofalo, C., Budić-Leto, I. Croatian white grape variety Maraština: first taste of its indigenous mycobiota. Food Research International 162, 111917, 2022
4. Gajdoš Kljusurić, J.; Boban, A.; Mucalo, A.; Budić-Leto, I. Novel application of NIR spectroscopy for non-destructive determination of ‘Maraština’ wine parameters. Foods 2022, 11, 1172
5. Jolly, N. P., Varela, C., Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ana BOBAN¹, Vesna MILANOVIò, Zvonimir JURUN¹, Ana MUCALO¹, Irena BUDIĆ-LETO¹

1. Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
2. Polytechnic University of Marche, Department of Agricultural, Food and Environmental Sciences, Ancona, Italy, Via Brecce Bianche, 60131 Ancona, Italy

Contact the author*

Keywords

non-Saccharomyces, monoculture fermentation, FTIR, yeast cell counting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.