terclim by ICS banner
IVES 9 IVES Conference Series 9 FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

Abstract

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains. The Maraština sterile grape juice was inoculated with yeast isolates at a concentration of 10⁶ cells/mL in a laboratory flask. The fermentation process was monitored by psycho-chemical parameters and yeast cell counting on WL agar plates. Samples were analyzed by infrared spectroscopy with Fourier transformation (FTIR). Residual sugar after alcoholic fermentation was between 2.3 and 6.8 g/L for all species.

M. chrysoperlae was yeast first finished fermentation after 20 days. Production of volatile acidity was similar for all indigenous yeasts (0.55-0.68 g/L) except H. pseudoguillermonondii which produced 0.87 g/L of volatile acidity and the lowest level of ethanol (11.5 % vol). On the other side, M. sinensis produced wines with the highest level of ethanol (12.7 % vol) and with low concentrations of malic acid. Fermentation with H. pseudoburtonii showed the highest level of lactic acid, 0.67 g/L. The obtained results allow the selection of yeasts for further research in the selection of potential starter cultures for creating a wine with regional character.
1. Whitener, M.E.B., Stanstrup, J., Carlin, S., Divol, B., Toit, M.D., Vrhovšek, U. (2017). Effect of non-Saccharomyces yeast on the volatile chemical profile of Shiraz wine. Australian Journal of Grape and Wine Research. 23, 179–192.
2. Man-Hsi Lin, M., Boss, K.P., Walker, E.M., Sumby, M.K., Grbin, R.P., Jiranek, V. (2020). Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. International Journal of Food Microbiology. 312,108373, 1-12.
3. Milanović, V., Cardinali, F., Ferrocino, I., Boban, A., Franciosa, I., Gajdoš Kljusurić, J., Mucalo, A., Osimani, A., Aquilanti, L., Garofalo, C., Budić-Leto, I. Croatian white grape variety Maraština: first taste of its indigenous mycobiota. Food Research International 162, 111917, 2022
4. Gajdoš Kljusurić, J.; Boban, A.; Mucalo, A.; Budić-Leto, I. Novel application of NIR spectroscopy for non-destructive determination of ‘Maraština’ wine parameters. Foods 2022, 11, 1172
5. Jolly, N. P., Varela, C., Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ana BOBAN¹, Vesna MILANOVIò, Zvonimir JURUN¹, Ana MUCALO¹, Irena BUDIĆ-LETO¹

1. Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
2. Polytechnic University of Marche, Department of Agricultural, Food and Environmental Sciences, Ancona, Italy, Via Brecce Bianche, 60131 Ancona, Italy

Contact the author*

Keywords

non-Saccharomyces, monoculture fermentation, FTIR, yeast cell counting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.