terclim by ICS banner
IVES 9 IVES Conference Series 9 FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

Abstract

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains. The Maraština sterile grape juice was inoculated with yeast isolates at a concentration of 10⁶ cells/mL in a laboratory flask. The fermentation process was monitored by psycho-chemical parameters and yeast cell counting on WL agar plates. Samples were analyzed by infrared spectroscopy with Fourier transformation (FTIR). Residual sugar after alcoholic fermentation was between 2.3 and 6.8 g/L for all species.

M. chrysoperlae was yeast first finished fermentation after 20 days. Production of volatile acidity was similar for all indigenous yeasts (0.55-0.68 g/L) except H. pseudoguillermonondii which produced 0.87 g/L of volatile acidity and the lowest level of ethanol (11.5 % vol). On the other side, M. sinensis produced wines with the highest level of ethanol (12.7 % vol) and with low concentrations of malic acid. Fermentation with H. pseudoburtonii showed the highest level of lactic acid, 0.67 g/L. The obtained results allow the selection of yeasts for further research in the selection of potential starter cultures for creating a wine with regional character.
1. Whitener, M.E.B., Stanstrup, J., Carlin, S., Divol, B., Toit, M.D., Vrhovšek, U. (2017). Effect of non-Saccharomyces yeast on the volatile chemical profile of Shiraz wine. Australian Journal of Grape and Wine Research. 23, 179–192.
2. Man-Hsi Lin, M., Boss, K.P., Walker, E.M., Sumby, M.K., Grbin, R.P., Jiranek, V. (2020). Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. International Journal of Food Microbiology. 312,108373, 1-12.
3. Milanović, V., Cardinali, F., Ferrocino, I., Boban, A., Franciosa, I., Gajdoš Kljusurić, J., Mucalo, A., Osimani, A., Aquilanti, L., Garofalo, C., Budić-Leto, I. Croatian white grape variety Maraština: first taste of its indigenous mycobiota. Food Research International 162, 111917, 2022
4. Gajdoš Kljusurić, J.; Boban, A.; Mucalo, A.; Budić-Leto, I. Novel application of NIR spectroscopy for non-destructive determination of ‘Maraština’ wine parameters. Foods 2022, 11, 1172
5. Jolly, N. P., Varela, C., Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ana BOBAN¹, Vesna MILANOVIò, Zvonimir JURUN¹, Ana MUCALO¹, Irena BUDIĆ-LETO¹

1. Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
2. Polytechnic University of Marche, Department of Agricultural, Food and Environmental Sciences, Ancona, Italy, Via Brecce Bianche, 60131 Ancona, Italy

Contact the author*

Keywords

non-Saccharomyces, monoculture fermentation, FTIR, yeast cell counting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.