terclim by ICS banner
IVES 9 IVES Conference Series 9 MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

Abstract

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process. The technology used is based upon a home-made platform (labview based) for comparison of cells with recorded templates (1). Sorting is achieved by triggering electric fields on chip to actuate the hit droplets in the selection channels. Budding cells, ascospores, zygotes are differentiated at rates of ~30 drops/sec. From freshly mated strains, newly formed F1-zygotes can be sorted, while single ascus can be sorted from sporulating strains. Around 300 positive droplets with the desired event can be collected in a fraction tube using a single chip in one hour. This microfluidic platform constitutes an original device for achieving critical operation of yeast breeding at a Hight ought level.

1. Girault, M., Beneyton, T., del Amo, Y. & Baret, J. C. Microfluidic technology for plankton research. Curr. Opin. Biotechnol. 55, 134–150 (2019)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julien Chaillot¹, Ryma Benrabah², Beneyton Thomas¹, Philippe Marullo2,3, Mathias Girault¹, Jean Christophe Baret¹

1. CRPP, Univ. Bordeaux, CNRS, UMR 5031, Pessac, France
2. Biolaffort, Floirac, France
3. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

breeding, yeast spores, hybridization, microfluidics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.