terclim by ICS banner
IVES 9 IVES Conference Series 9 PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Abstract

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae. Commercial yeast M. pulcherrima FLAVIA served to control fermentation. Regarding the good sensitivity, specificity, and dynamic range of the UHPLC–MS/MS method, different classes of lipids were identified and quantified: free saturated fatty acids (6), free unsaturated fatty acids (5), triterpenoid (1), glycerophospholipid (1), glycerolipid (1), and free fatty acid esters (6). Methyl stearate was the only compound that is identified and quantified in wine but not found in must. The most abundant lipid compound in the Maraština musts and all experimental Maraština wines was palmitic acid (C16:0). Fermentation trials with M. chyrsoperlae yeast strain showed the highest concentrations of glycerolipid, triterpenoid, and free fatty acids. Mystric, linoleic acid, and glycerophospholipid had the highest concentrations in the fermentation with the M. sinensis/shanxiensis yeast strain, whereas M. pulcherima dominated in the production of ethyl free fatty esters.

 

1. Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys.Acta-Mol. Cell Biol. Lipids 2011, 1811, 637-647.
2. Subramaniam, S.; Fahy, E.; Gupta, S.; Sud, M.; Byrnes, R. W.; Cotter, D.; Maurya, M. R. Bioinformatics and systems biology of the lipidome. Chemical Reviews 2011, 111(10), 6452-6490.
3. Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P. M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Food Research International 2019, 125, 108556.
4. Della Corte, A.; Chitarrini, G.; Di Gangi, Iole M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovšek, U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta, 2015, 140, 53-61.
5. Masuero, D.; Škrab, D.; Chitarrini, G.; Garcia-Aloy, M.; Franceschi, P.; Sivilotti, P.; Guella, G.; Vrhovsek, U. Grape lipidomics: an extensive profiling thorough UHPLC–MS/MS method. Metabolites 2021, 11(12), 827.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ana BOBAN¹, Vesna MILANOVIò, Urska VRHOVSEK³, Domenico MASUERO³, Zvonimir JURUN¹, Irena BUDIĆ-LETO¹

1. Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
2. Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Universit`a Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
3. Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige,TN, Italy

Contact the author*

Keywords

lipids, Metschnikowia species, indigenous yeast, Maraština wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.