terclim by ICS banner
IVES 9 IVES Conference Series 9 PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Abstract

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae. Commercial yeast M. pulcherrima FLAVIA served to control fermentation. Regarding the good sensitivity, specificity, and dynamic range of the UHPLC–MS/MS method, different classes of lipids were identified and quantified: free saturated fatty acids (6), free unsaturated fatty acids (5), triterpenoid (1), glycerophospholipid (1), glycerolipid (1), and free fatty acid esters (6). Methyl stearate was the only compound that is identified and quantified in wine but not found in must. The most abundant lipid compound in the Maraština musts and all experimental Maraština wines was palmitic acid (C16:0). Fermentation trials with M. chyrsoperlae yeast strain showed the highest concentrations of glycerolipid, triterpenoid, and free fatty acids. Mystric, linoleic acid, and glycerophospholipid had the highest concentrations in the fermentation with the M. sinensis/shanxiensis yeast strain, whereas M. pulcherima dominated in the production of ethyl free fatty esters.

 

1. Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys.Acta-Mol. Cell Biol. Lipids 2011, 1811, 637-647.
2. Subramaniam, S.; Fahy, E.; Gupta, S.; Sud, M.; Byrnes, R. W.; Cotter, D.; Maurya, M. R. Bioinformatics and systems biology of the lipidome. Chemical Reviews 2011, 111(10), 6452-6490.
3. Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P. M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F. LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Food Research International 2019, 125, 108556.
4. Della Corte, A.; Chitarrini, G.; Di Gangi, Iole M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovšek, U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta, 2015, 140, 53-61.
5. Masuero, D.; Škrab, D.; Chitarrini, G.; Garcia-Aloy, M.; Franceschi, P.; Sivilotti, P.; Guella, G.; Vrhovsek, U. Grape lipidomics: an extensive profiling thorough UHPLC–MS/MS method. Metabolites 2021, 11(12), 827.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ana BOBAN¹, Vesna MILANOVIò, Urska VRHOVSEK³, Domenico MASUERO³, Zvonimir JURUN¹, Irena BUDIĆ-LETO¹

1. Institute for Adriatic Crops and Karst Reclamation, 21 000 Split, Croatia
2. Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Universit`a Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
3. Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige,TN, Italy

Contact the author*

Keywords

lipids, Metschnikowia species, indigenous yeast, Maraština wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).