terclim by ICS banner
IVES 9 IVES Conference Series 9 PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Abstract

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF. Among them, mannoproteins stand out, being the main component of the yeast cell wall. These polysaccharides are released in different amounts during the winemaking process in alcoholic fermentation and aging on the lees. It has been described that the mannoproteins released by yeasts can activate the development MLF due to detoxification but little is known about the possible metabolization of mannoproteins by O. oeni.

The aim of this work was to evaluate the changes in the proteome of O. oeni PSU-1 due to the presence of mannoproteins. The addition of 2 g/L of a purified extract of mannoproteins resulted in the decrease of the duration of MLF in wine synthetic medium. This could be correlated to the decrease in mannoprotein content after MLF.  Proteomic analysis of O. oeni cells allowed the identification a total of 956 proteins. From these, 59 showed significant differences in abundance due to mannoprotein presence. On one side, the functional category of carbohydrate transport and metabolism was the most affected by mannoprotein addition and represented 25% of the proteins showing an increased abundance with respect to the control condition. Remarkably, one protein with increased abundance was a permease of the phosphotransferase system (PTS). Mannose, which can be liberated from mannoproteins as a result of O. oeni mannosidase activity, has been described as a PTS substrate, and could be implicated in O. oeni growth stimulation [1, 2]. On the other side, amino acid transport and metabolism, together with translation, were the functional categories that showed a higher number of proteins with decreased abundance in comparison to the control condition. In conclusion, O. oeni PSU-1 proteome was modified due to mannoprotein addition, indicating the metabolic use of these compounds that resulted in a stimulatory effect on MLF.

 

  1. Diez L, Guadalupe Z, Ayestarán B, Ruiz-Larrea F. (2010) Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria. J Agric Food Chem 58 (13):7731-9. doi: 10.1021/jf100199n
  2. Jamal Z, Miot-Sertier C, Thibau F, Dutilh L, Lonvaud-Funel A, Ballestra P, Le Marrec C, Dols-Lafargue M. (2013) Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 79 (11): 3371-9. doi: 10.1128/AEM.00380-13

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paloma Toraño1, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1

  1. Grup de Biotecnologia Enològia,  Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
  2. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

mannoproteins, Oenococcus oeni, malolactic fermentation, proteomics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4