terclim by ICS banner
IVES 9 IVES Conference Series 9 PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Abstract

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF. Among them, mannoproteins stand out, being the main component of the yeast cell wall. These polysaccharides are released in different amounts during the winemaking process in alcoholic fermentation and aging on the lees. It has been described that the mannoproteins released by yeasts can activate the development MLF due to detoxification but little is known about the possible metabolization of mannoproteins by O. oeni.

The aim of this work was to evaluate the changes in the proteome of O. oeni PSU-1 due to the presence of mannoproteins. The addition of 2 g/L of a purified extract of mannoproteins resulted in the decrease of the duration of MLF in wine synthetic medium. This could be correlated to the decrease in mannoprotein content after MLF.  Proteomic analysis of O. oeni cells allowed the identification a total of 956 proteins. From these, 59 showed significant differences in abundance due to mannoprotein presence. On one side, the functional category of carbohydrate transport and metabolism was the most affected by mannoprotein addition and represented 25% of the proteins showing an increased abundance with respect to the control condition. Remarkably, one protein with increased abundance was a permease of the phosphotransferase system (PTS). Mannose, which can be liberated from mannoproteins as a result of O. oeni mannosidase activity, has been described as a PTS substrate, and could be implicated in O. oeni growth stimulation [1, 2]. On the other side, amino acid transport and metabolism, together with translation, were the functional categories that showed a higher number of proteins with decreased abundance in comparison to the control condition. In conclusion, O. oeni PSU-1 proteome was modified due to mannoprotein addition, indicating the metabolic use of these compounds that resulted in a stimulatory effect on MLF.

 

  1. Diez L, Guadalupe Z, Ayestarán B, Ruiz-Larrea F. (2010) Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria. J Agric Food Chem 58 (13):7731-9. doi: 10.1021/jf100199n
  2. Jamal Z, Miot-Sertier C, Thibau F, Dutilh L, Lonvaud-Funel A, Ballestra P, Le Marrec C, Dols-Lafargue M. (2013) Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 79 (11): 3371-9. doi: 10.1128/AEM.00380-13

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paloma Toraño1, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1

  1. Grup de Biotecnologia Enològia,  Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
  2. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

mannoproteins, Oenococcus oeni, malolactic fermentation, proteomics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].