terclim by ICS banner
IVES 9 IVES Conference Series 9 PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Abstract

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF. Among them, mannoproteins stand out, being the main component of the yeast cell wall. These polysaccharides are released in different amounts during the winemaking process in alcoholic fermentation and aging on the lees. It has been described that the mannoproteins released by yeasts can activate the development MLF due to detoxification but little is known about the possible metabolization of mannoproteins by O. oeni.

The aim of this work was to evaluate the changes in the proteome of O. oeni PSU-1 due to the presence of mannoproteins. The addition of 2 g/L of a purified extract of mannoproteins resulted in the decrease of the duration of MLF in wine synthetic medium. This could be correlated to the decrease in mannoprotein content after MLF.  Proteomic analysis of O. oeni cells allowed the identification a total of 956 proteins. From these, 59 showed significant differences in abundance due to mannoprotein presence. On one side, the functional category of carbohydrate transport and metabolism was the most affected by mannoprotein addition and represented 25% of the proteins showing an increased abundance with respect to the control condition. Remarkably, one protein with increased abundance was a permease of the phosphotransferase system (PTS). Mannose, which can be liberated from mannoproteins as a result of O. oeni mannosidase activity, has been described as a PTS substrate, and could be implicated in O. oeni growth stimulation [1, 2]. On the other side, amino acid transport and metabolism, together with translation, were the functional categories that showed a higher number of proteins with decreased abundance in comparison to the control condition. In conclusion, O. oeni PSU-1 proteome was modified due to mannoprotein addition, indicating the metabolic use of these compounds that resulted in a stimulatory effect on MLF.

 

  1. Diez L, Guadalupe Z, Ayestarán B, Ruiz-Larrea F. (2010) Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria. J Agric Food Chem 58 (13):7731-9. doi: 10.1021/jf100199n
  2. Jamal Z, Miot-Sertier C, Thibau F, Dutilh L, Lonvaud-Funel A, Ballestra P, Le Marrec C, Dols-Lafargue M. (2013) Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl Environ Microbiol 79 (11): 3371-9. doi: 10.1128/AEM.00380-13

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paloma Toraño1, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1

  1. Grup de Biotecnologia Enològia,  Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
  2. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

mannoproteins, Oenococcus oeni, malolactic fermentation, proteomics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

LARGE SURVEY OF THE CHEMICAL COMPOSITION OF WINES RESULTING OF THE PRESSING OF RED WINE MARC. FIRST RESULTS

In the Bordeaux vineyards, press red wine represents about 15% of the volume of wines. Valuing this large volume of press wine is necessary from an economic point of view, of course, but also because of their organoleptic contribution to the blend. Nevertheless, there is a lack of recent knowledge on the composition of press wines. This work aims to establish an initial assessment of their composition (aromatic and polyphenolic) and to set up hypothesis on to the links with their sensorial identity.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.