terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Abstract

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermen-tative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must. Daily glucose and fructose consumption was monitored and at the final point free sorting task was conducted to categorize the samples according to their organoleptic profile. The most performant strains were selected and sub-sequently subjected in a second laboratory scale fermentation. Oenological properties such as, titratable acidity, glucose/fructose consumption, total acidity, volatile acidity, pH, L-malic acid, yeast assimilable nitrogen, free and total SO₂ as well as sensory characteristics were determined. Finally, two wines with different aromatic profiles were subjected in Gas Chromatography- Olfactometry- Mass Spectrometry (GC-O MS) analysis. The molecular typing revealed the presence of 20 different S. cerevisiae strains from which 65% indicated high fermentative capacity. Hierarchical Cluster Analysis (HCA) based on sensory evaluation results clearly discriminated the produced wines and led to the selection of 4 strains. After the second pilot fermentation all selected strains resulted in dry wines with desirable technological and organoleptic characteristics. Additionally, statistically significant differences were noticed regar-ding the perception of tropical fruits and acidity while according to the results of GC-O MS analysis both samples revealed similar aromatic profiles. To the best of our knowledge, this is the first assay that ex-plores the yeast strain effect on the aromatic profile of Assyrtiko variety by means of GC-O MS analysis.

Acknowledgements: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call ” Greece – Israel Call for Proposals for Joint R&D Projects 2019″(project code: T10ΔΙΣ-00060).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aikaterini P. Tzamourani¹, Elli Goulioti², Alexandra Evangelou¹, Yorgos Kotseridis², Panagiotis Arapitsas¹, Ioannis Paraskevopoulos¹ And Maria Dimopoulou¹

1. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece
2. Laboratory of Enology & Alcoholic Drinks (LEAD), Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece

Contact the author*

Keywords

Indigenous yeast, S. cerevisiae, Strain variability, Assyrtiko wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.