terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

Abstract

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate. The chemical profile and sensory analysis were studied every three months (T1, T3 and T6) for a total of six months of storage. HT stability and evolution of sensory attributes were also investigated. The oenological parameters (such as free and total SO₂, residual sugars, organic acids) were evaluated with multiparametric wine analyser, the dissolved oxygen was measured according to OIV protocols, and HPLC-DAD was used to evaluate the phenolic profile [3]. To explore the effects of HT addition, Multiple Factor Analysis (MFA) was applied. The Projective Mapping sensory protocol [4], combined with CATA (check-all-that-apply) method, were chosen to achieve a rapid categorization and characterization of Borrigiano wine using an internal panel of fourteen assessors (aged 25- 40 years old). Procrustean Multiple Factor Analysis (pMFA) and CLUSTATIS methods [5] were used to manage the sensory data. Evaluators were asked to rank wine samples according to their preferences and a frequency table was constructed. The HT addition (at different concentrations) and storage time influenced the chemical profiles and sensory attributes. After six months of storage, free sulfur dioxide remained higher in wines with the highest HT content. On the contrary, the dissolved oxygen was higher in the control wines, and was negatively correlated with the HT content. Acetic acid, which is the most important quality parameter of wine, was higher in the control wine samples. The assessors preferred the samples with the highest amount of HT; in fact, this wine gained first position for a greater number of times in the ranking constructed by the panel. The samples with the highest amount of HT had the lowest values of astringency, the highest level of vegetal, red fruit, dried fruit and wood aroma and red fruit flavour.

 

1. Boselli, E., Minardi, M., Giomo, A., Frega, N. G. (2006). Anal. Chim. Acta, 563(1-2), 93-100.
2. Raposo, R., Ruiz-Moreno, M. J., Garde-Cerdán, T., Puertas, B., Moreno-Rojas, J. M., Gonzalo-Diago, A., Cantos-Villar, E. (2016). Food Chem., 192, 25-33.
3. Poggesi, S.; Darnal, A.; Ceci, A.T.; Longo, E.; Vanzo, L.; Mimmo, T.; Boselli, E. Foods (2022), 11, 3458.
4. Valentin, D., Chollet, S., Nestrud, M., Abdi, H. (2018). Descriptive analysis in sensory evaluation, 535-559.
5. Morand, E., Jérome Pagès Morand, E., and Jérome P. Food Qual. Prefer. 36-42. 17.1-2 (2006): 36-42.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adriana Teresa Ceci1,2, *, Aakriti Darnal1,2, Simone Poggesi1,2, Edoardo Longo1,2, Enrico Angelo Altieri³, Reeta Davis³, Margaret Walsh, James Britton, Renzo Nicolodi⁴, Kevin O Connor³, and Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
3. Nova Mentis Ltd., c/o Nova UCD, Belfield Innovation Park, University College Dublin, D04 V2P1 Belfield, Ireland.
4. Nutramentis srl, NOI Techpark South Tyrol/Alto Adige, Building D1, Via Ipazia, 2, 39100 Bolzano, Italy. 

Contact the author*

Keywords

Projective mapping, CATA, polyphenolic profile, hydroxytyrosol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).