terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

Abstract

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate. The chemical profile and sensory analysis were studied every three months (T1, T3 and T6) for a total of six months of storage. HT stability and evolution of sensory attributes were also investigated. The oenological parameters (such as free and total SO₂, residual sugars, organic acids) were evaluated with multiparametric wine analyser, the dissolved oxygen was measured according to OIV protocols, and HPLC-DAD was used to evaluate the phenolic profile [3]. To explore the effects of HT addition, Multiple Factor Analysis (MFA) was applied. The Projective Mapping sensory protocol [4], combined with CATA (check-all-that-apply) method, were chosen to achieve a rapid categorization and characterization of Borrigiano wine using an internal panel of fourteen assessors (aged 25- 40 years old). Procrustean Multiple Factor Analysis (pMFA) and CLUSTATIS methods [5] were used to manage the sensory data. Evaluators were asked to rank wine samples according to their preferences and a frequency table was constructed. The HT addition (at different concentrations) and storage time influenced the chemical profiles and sensory attributes. After six months of storage, free sulfur dioxide remained higher in wines with the highest HT content. On the contrary, the dissolved oxygen was higher in the control wines, and was negatively correlated with the HT content. Acetic acid, which is the most important quality parameter of wine, was higher in the control wine samples. The assessors preferred the samples with the highest amount of HT; in fact, this wine gained first position for a greater number of times in the ranking constructed by the panel. The samples with the highest amount of HT had the lowest values of astringency, the highest level of vegetal, red fruit, dried fruit and wood aroma and red fruit flavour.

 

1. Boselli, E., Minardi, M., Giomo, A., Frega, N. G. (2006). Anal. Chim. Acta, 563(1-2), 93-100.
2. Raposo, R., Ruiz-Moreno, M. J., Garde-Cerdán, T., Puertas, B., Moreno-Rojas, J. M., Gonzalo-Diago, A., Cantos-Villar, E. (2016). Food Chem., 192, 25-33.
3. Poggesi, S.; Darnal, A.; Ceci, A.T.; Longo, E.; Vanzo, L.; Mimmo, T.; Boselli, E. Foods (2022), 11, 3458.
4. Valentin, D., Chollet, S., Nestrud, M., Abdi, H. (2018). Descriptive analysis in sensory evaluation, 535-559.
5. Morand, E., Jérome Pagès Morand, E., and Jérome P. Food Qual. Prefer. 36-42. 17.1-2 (2006): 36-42.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adriana Teresa Ceci1,2, *, Aakriti Darnal1,2, Simone Poggesi1,2, Edoardo Longo1,2, Enrico Angelo Altieri³, Reeta Davis³, Margaret Walsh, James Britton, Renzo Nicolodi⁴, Kevin O Connor³, and Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
3. Nova Mentis Ltd., c/o Nova UCD, Belfield Innovation Park, University College Dublin, D04 V2P1 Belfield, Ireland.
4. Nutramentis srl, NOI Techpark South Tyrol/Alto Adige, Building D1, Via Ipazia, 2, 39100 Bolzano, Italy. 

Contact the author*

Keywords

Projective mapping, CATA, polyphenolic profile, hydroxytyrosol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.