terclim by ICS banner
IVES 9 IVES Conference Series 9 IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

Abstract

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others. However, common parameters such as pH, alcohol or sugars composition² cannot fully explain the permissiveness differences observed between the wines studied.

The present study aims at identifying (if any) the chemical markers specifically present in permissive wines and absent from resistant ones or conversely. To achieve this goal, the metabolite profiles of red wines coming from different châteaux in Bordeaux area and displaying different permissiveness was examined. The chemical composition was studied using targeted and untargeted metabolic profiling by UHPLC-UV-HRMS and ¹H-NMR. Meanwhile, the wines were inoculated with selected Brettanomyces strains; the microbial growth kinetics were studied and used to classify the wines into distinct groups. With the help of unsupervised statistical analyses, these results were combined in order to draw correlations between the chemical markers and the wine permissiveness.

The nature and the origin of the chemical markers identified is discussed and additional assays are currently performed to confirm the incidence of each marker on the risk of Brettanomyces development.

 

1. Cibrario, A.; Miot-Sertier, C.; Paulin, M.; Bullier, B.; Riquier, L.; Perello, M.-C.; de Revel, G.; Albertin, W.; Masneuf-Pomarède, I.; Ballestra, P.; Dols-Lafargue, M. Brettanomyces Bruxellensis Phenotypic Diversity, Tolerance to Wine Stress and Wine Spoi-lage Ability. Food Microbiol. 2020, 87, 103379. https://doi.org/10.1016/j.fm.2019.103379.
2. Cibrario, A.; Perello, M. C.; Miot-Sertier, C.; Riquier, L.; de Revel, G.; Ballestra, P.; Dols-Lafargue, M. Carbohydrate Composition of Red Wines during Early Aging and Incidence on Spoilage by Brettanomyces Bruxellensis. Food Microbiol. 2020, 92, 103577. https://doi.org/10.1016/j.fm.2020.103577

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Julie Miranda¹, Laura Olazabal¹, Marguerite Dols-Lafargue¹, Caroline Rouger1,2

1. Univ. Bordeaux, ISVV, UMR 1366 Œnologie INRAE, Bordeaux INP, F-33882, Villenave d’Ornon, France
2. Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

Untargeted metabolomics, Brettanomyces bruxellensis, UHPLC-UV-HRMS, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².