terclim by ICS banner
IVES 9 IVES Conference Series 9 THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Abstract

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID. Wine produced using Vialatte Ferm R71 had higher PS content than the uninoculated control, primarily for the high and medium molecular weight PS. Wine colour and tannins were spectrophotometrically analysed. R82 wines were found to have statistically higher colour density and lower hue than EC1118, R71 and control wines. Furthermore, R82 wines had statistically lower concentrations of tannins than BRG YSEO wines. The aroma profiles were examined using SPME-GC-MS and it was found that R82 wines had statistically higher concentrations of several aromatic esters and alcohols compounds than all other wines, including ethyl isobutyrate, ethyl octanoate, ethyl hexanoate and butanol. Varietal thiols and thiol precursors were measured using LC-MS/MS. There was no statistical difference between then concentration of 3SH in the wines, but some differences in concentrations of varietal precursors, Cys-3SH and GSH-3SH, were measured.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Hayden R. Jones-Moore¹, Bruno Fedrizzi¹, Rebecca E. Jelley¹

1. School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, New Zealand

Contact the author*

Keywords

Yeast, New Zealand Pinot noir, Polysaccharides, Chemical profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.