terclim by ICS banner
IVES 9 IVES Conference Series 9 MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Abstract

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an important parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

The aim of this study was to assess the influence of phenolic composition and antioxidant properties on the ageing capacity of 14 Syrah red wines. This ageing capacity was measured by accelerated ageing tests (AATs) recently developed in our laboratory (thermal test at 60°C, enzymatic test with laccase and chemical test with H₂O₂)4. Different parameters were measured such as anthocyanin and flavanol contents, spectrophotometric antioxidant assays, voltammetric behaviour, colour parameters and free SO₂ levels. Statistical analyses were performed to model the results of the ATTs from the initial phenolic composition and antioxidant properties of Syrah red wines.

High correlations were obtained between the initial phenolic composition and the antioxidant properties of red wines. The results showed significant differences between the three studied ATTs, revealing specific mechanisms for each accelerated ageing condition. The Partial least squares (PLS) regression models results, based on measured parameters, had overall very good accuracy and involved different explaining variables for each test. The models have excellent predictive capacities with correlation coefficients (r²) between 0.89 et 0.98.

 

1. Gambuti, A., Rinaldi, A., Ugliano, M., & Moio, L. (2013). Evolution of Phenolic Compounds and Astringency during Aging of Red Wine : Effect of Oxygen Exposure before and after Bottling. Journal of Agricultural and Food Chemistry, 61(8), 1618-1627. https://doi.org/10.1021/jf302822b 
2. Waterhouse, A. L., & Miao, Y. (2021). Can Chemical Analysis Predict Wine Aging Capacity? Foods, 10(3), 654. https://doi. org/10.3390/foods10030654
3. Oliveira, C. M., Ferreira, A. C. S., De Freitas, V., & Silva, A. M. S. (2011). Oxidation mechanisms occurring in wines. Food Research International, 44(5), 1115-1126. https://doi.org/10.1016/j.foodres.2011.03.050
4. Deshaies, S., Cazals, G., Enjalbal, C., Constantin, T., Garcia, F., Mouls, L., & Saucier, C. (2020). Red Wine Oxidation : Accelerated Ageing Tests, Possible Reaction Mechanisms and Application to Syrah Red Wines. Antioxidants, 9, 663. https://doi. org/10.3390/antiox9080663

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luca Garcia¹, Stacy Deshaies¹, Thibaut Constantin¹, François Garcia¹ and Cédric Saucier¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

Red wine, Ageing capacity, Oxygen, Polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.