terclim by ICS banner
IVES 9 IVES Conference Series 9 MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Abstract

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an important parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

The aim of this study was to assess the influence of phenolic composition and antioxidant properties on the ageing capacity of 14 Syrah red wines. This ageing capacity was measured by accelerated ageing tests (AATs) recently developed in our laboratory (thermal test at 60°C, enzymatic test with laccase and chemical test with H₂O₂)4. Different parameters were measured such as anthocyanin and flavanol contents, spectrophotometric antioxidant assays, voltammetric behaviour, colour parameters and free SO₂ levels. Statistical analyses were performed to model the results of the ATTs from the initial phenolic composition and antioxidant properties of Syrah red wines.

High correlations were obtained between the initial phenolic composition and the antioxidant properties of red wines. The results showed significant differences between the three studied ATTs, revealing specific mechanisms for each accelerated ageing condition. The Partial least squares (PLS) regression models results, based on measured parameters, had overall very good accuracy and involved different explaining variables for each test. The models have excellent predictive capacities with correlation coefficients (r²) between 0.89 et 0.98.

 

1. Gambuti, A., Rinaldi, A., Ugliano, M., & Moio, L. (2013). Evolution of Phenolic Compounds and Astringency during Aging of Red Wine : Effect of Oxygen Exposure before and after Bottling. Journal of Agricultural and Food Chemistry, 61(8), 1618-1627. https://doi.org/10.1021/jf302822b 
2. Waterhouse, A. L., & Miao, Y. (2021). Can Chemical Analysis Predict Wine Aging Capacity? Foods, 10(3), 654. https://doi. org/10.3390/foods10030654
3. Oliveira, C. M., Ferreira, A. C. S., De Freitas, V., & Silva, A. M. S. (2011). Oxidation mechanisms occurring in wines. Food Research International, 44(5), 1115-1126. https://doi.org/10.1016/j.foodres.2011.03.050
4. Deshaies, S., Cazals, G., Enjalbal, C., Constantin, T., Garcia, F., Mouls, L., & Saucier, C. (2020). Red Wine Oxidation : Accelerated Ageing Tests, Possible Reaction Mechanisms and Application to Syrah Red Wines. Antioxidants, 9, 663. https://doi. org/10.3390/antiox9080663

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Luca Garcia¹, Stacy Deshaies¹, Thibaut Constantin¹, François Garcia¹ and Cédric Saucier¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

Red wine, Ageing capacity, Oxygen, Polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.