terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Abstract

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

The experimental plan included (i) the characterization of selected YDPs and (ii) their addition as nutrient in microvinification trials using must as medium. Fourteen commercial YDPs of different nature (inactivated yeasts [IYs], mannoproteins [MPs], yeast autolysates [YAs], yeast extract [YEs] and yeast hulls [YHs]) were chosen. They were characterized in terms of flavins (RF, FAD and FMN), amino acid profile and sulfur-containing compounds (e.g. reduced glutathione [GSH], cysteine, cell wall cysteine and adsorbed cysteine). The characterized IYs, YEs and YHs were used for fermentation trials, carried out in Chardonnay must with 4 Saccharomyces cerevisiae strains. Flavins were quantified before and after the alcoholic fermentation.

Both YEs and one YA were the richest in RF which increase up to 20 μg/L was estimated considering an addition in must of 40 g/hL. These YDPs showed also the highest concentration of amino acids (up to 300 mg/L). However, among the flavins, FMN was the major one in most of the analyzed YDPs. With regards to GSH, this tripeptide was found at the highest concentration in the same YA (13.2 mg/g). The addition of YDPs caused a variation in RF released during AF depending on both the yeast strain and YDP nature. The addition of YEs caused an RF increase in must of about 15-20 μg/L, in accordance to RF content found in these products. For one of the yeast strains investigated, RF fatherly increased up to 30 μg/L during AF.

These results evidence the impact of YDPs on RF content indicating that the selection of nutrients combined with the choice of fermenting yeast strain should be considered for preventing the risk of LST appearance.

 

1. Fracassetti D., Di Canito A., Bodon R., Messina N., Vigentini I., Foschino R., Tirelli A. (2021).  Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science & Technology 112, 547-558. https://doi.org/10.1016/j.tifs.2021.04.013
2. Di Canito A., Altomare A., Fracassetti D., Messina N., Foschino R., Vigentini I. (2023). The riboflavin metabolism in four Saccharomyces cerevisiae wine strains: assessment in oenological condition and potential implications with the light-struck taste. Journal of Fungi 9 (2023), 78. https://doi.org/10.3390/jof9010078
3. Fracassetti D., Gabrielli M., Encinas J., Manara M., Pellegrino I., Tirelli A. (2017). Approaches to prevent the light-struck taste in white wine. Australian Journal of Grape and Wine Research 23, 329–333, 2017. https://doi.org/10.1111/ajgw.12295

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Alessio Altomare¹, Alessandra di Canito², Ileana Vigentini², Roberto Foschino², Antonio Tirelli¹, Daniela Fracassetti¹*

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2. Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy – *Corresponding author

Contact the author*

Keywords

Light-struck taste, Flavins, Gluthathione, Must

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.