terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Abstract

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

The experimental plan included (i) the characterization of selected YDPs and (ii) their addition as nutrient in microvinification trials using must as medium. Fourteen commercial YDPs of different nature (inactivated yeasts [IYs], mannoproteins [MPs], yeast autolysates [YAs], yeast extract [YEs] and yeast hulls [YHs]) were chosen. They were characterized in terms of flavins (RF, FAD and FMN), amino acid profile and sulfur-containing compounds (e.g. reduced glutathione [GSH], cysteine, cell wall cysteine and adsorbed cysteine). The characterized IYs, YEs and YHs were used for fermentation trials, carried out in Chardonnay must with 4 Saccharomyces cerevisiae strains. Flavins were quantified before and after the alcoholic fermentation.

Both YEs and one YA were the richest in RF which increase up to 20 μg/L was estimated considering an addition in must of 40 g/hL. These YDPs showed also the highest concentration of amino acids (up to 300 mg/L). However, among the flavins, FMN was the major one in most of the analyzed YDPs. With regards to GSH, this tripeptide was found at the highest concentration in the same YA (13.2 mg/g). The addition of YDPs caused a variation in RF released during AF depending on both the yeast strain and YDP nature. The addition of YEs caused an RF increase in must of about 15-20 μg/L, in accordance to RF content found in these products. For one of the yeast strains investigated, RF fatherly increased up to 30 μg/L during AF.

These results evidence the impact of YDPs on RF content indicating that the selection of nutrients combined with the choice of fermenting yeast strain should be considered for preventing the risk of LST appearance.

 

1. Fracassetti D., Di Canito A., Bodon R., Messina N., Vigentini I., Foschino R., Tirelli A. (2021).  Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science & Technology 112, 547-558. https://doi.org/10.1016/j.tifs.2021.04.013
2. Di Canito A., Altomare A., Fracassetti D., Messina N., Foschino R., Vigentini I. (2023). The riboflavin metabolism in four Saccharomyces cerevisiae wine strains: assessment in oenological condition and potential implications with the light-struck taste. Journal of Fungi 9 (2023), 78. https://doi.org/10.3390/jof9010078
3. Fracassetti D., Gabrielli M., Encinas J., Manara M., Pellegrino I., Tirelli A. (2017). Approaches to prevent the light-struck taste in white wine. Australian Journal of Grape and Wine Research 23, 329–333, 2017. https://doi.org/10.1111/ajgw.12295

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Alessio Altomare¹, Alessandra di Canito², Ileana Vigentini², Roberto Foschino², Antonio Tirelli¹, Daniela Fracassetti¹*

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2. Department of Biomedical, Surgical and Dental Sciences (DSBCO), Università degli Studi di Milano, Via della Commenda 10, 20122 Milan, Italy – *Corresponding author

Contact the author*

Keywords

Light-struck taste, Flavins, Gluthathione, Must

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.