terclim by ICS banner
IVES 9 IVES Conference Series 9 FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

Abstract

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed. For this reason, an extended literature review took place identifying gaps for further research meeting the needs of the modern wine industry (Thanasi et al., 2022). The methodology that was followed was based on grouping the different studies according to the main sampling material used – 1) leaves, stems, and berries; 2) grape musts; 3) wines. For each sampling material the studies were categorized in terms of 1) main aim of the analysis; 2) type of sample; 3) sample preparation mode;4) wavenumber range (/cm); 5) spectral pre-treatment; 6) statistical method.

The most important findings were: 1) the different sample preparation modes can influence the spectra;

2) a limited number of samples (less than 100 in most cases) was used and the validation took place with cross-validation tests; 3) the developed models were not applied to different grapevine cultivars, har- vests, and types of wines; 4) many developed methods were focused on a specific oenological parameter or chemical compound or a specific stage of the winemaking process; 5) compounds with a concentration higher than 1 g/L are easier to be determined by FTIR; 6) the complexity of the wine matrix and the chemical similarity of the compounds under study makes the interpretation of the spectra very difficult due to several interferences.

1. Thanasi V., Catarino S., Ricardo-da-Silva J., 2022. Fourier-Transform Infrared Spectroscopy in monitoring the wine produc-tion. Ciência Téc. Vitiv., 37(1), 77-99. https://doi.org/10.1051/ctv/ctv2022370179

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vasiliki Thanasi¹, Sofia Catarino1,2, Jorge Ricardo-da-Silva¹

1.LEAF – (Linking Landscape Environment Agriculture and Food ) Research Center, Instituto Superior de Agronomia, Univer-sidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
2.CeFEMA – (Centre of Physics and Engineering of Advanced Materials) Research Center, Instituto Superior Técnico, Univer-sidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

FTIR spectroscopy, wine, quality control, authenticity assessment

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.