terclim by ICS banner
IVES 9 IVES Conference Series 9 FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

Abstract

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed. For this reason, an extended literature review took place identifying gaps for further research meeting the needs of the modern wine industry (Thanasi et al., 2022). The methodology that was followed was based on grouping the different studies according to the main sampling material used – 1) leaves, stems, and berries; 2) grape musts; 3) wines. For each sampling material the studies were categorized in terms of 1) main aim of the analysis; 2) type of sample; 3) sample preparation mode;4) wavenumber range (/cm); 5) spectral pre-treatment; 6) statistical method.

The most important findings were: 1) the different sample preparation modes can influence the spectra;

2) a limited number of samples (less than 100 in most cases) was used and the validation took place with cross-validation tests; 3) the developed models were not applied to different grapevine cultivars, har- vests, and types of wines; 4) many developed methods were focused on a specific oenological parameter or chemical compound or a specific stage of the winemaking process; 5) compounds with a concentration higher than 1 g/L are easier to be determined by FTIR; 6) the complexity of the wine matrix and the chemical similarity of the compounds under study makes the interpretation of the spectra very difficult due to several interferences.

1. Thanasi V., Catarino S., Ricardo-da-Silva J., 2022. Fourier-Transform Infrared Spectroscopy in monitoring the wine produc-tion. Ciência Téc. Vitiv., 37(1), 77-99. https://doi.org/10.1051/ctv/ctv2022370179

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vasiliki Thanasi¹, Sofia Catarino1,2, Jorge Ricardo-da-Silva¹

1.LEAF – (Linking Landscape Environment Agriculture and Food ) Research Center, Instituto Superior de Agronomia, Univer-sidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
2.CeFEMA – (Centre of Physics and Engineering of Advanced Materials) Research Center, Instituto Superior Técnico, Univer-sidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

FTIR spectroscopy, wine, quality control, authenticity assessment

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.