terclim by ICS banner
IVES 9 IVES Conference Series 9 FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

Abstract

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed. For this reason, an extended literature review took place identifying gaps for further research meeting the needs of the modern wine industry (Thanasi et al., 2022). The methodology that was followed was based on grouping the different studies according to the main sampling material used – 1) leaves, stems, and berries; 2) grape musts; 3) wines. For each sampling material the studies were categorized in terms of 1) main aim of the analysis; 2) type of sample; 3) sample preparation mode;4) wavenumber range (/cm); 5) spectral pre-treatment; 6) statistical method.

The most important findings were: 1) the different sample preparation modes can influence the spectra;

2) a limited number of samples (less than 100 in most cases) was used and the validation took place with cross-validation tests; 3) the developed models were not applied to different grapevine cultivars, har- vests, and types of wines; 4) many developed methods were focused on a specific oenological parameter or chemical compound or a specific stage of the winemaking process; 5) compounds with a concentration higher than 1 g/L are easier to be determined by FTIR; 6) the complexity of the wine matrix and the chemical similarity of the compounds under study makes the interpretation of the spectra very difficult due to several interferences.

1. Thanasi V., Catarino S., Ricardo-da-Silva J., 2022. Fourier-Transform Infrared Spectroscopy in monitoring the wine produc-tion. Ciência Téc. Vitiv., 37(1), 77-99. https://doi.org/10.1051/ctv/ctv2022370179

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vasiliki Thanasi¹, Sofia Catarino1,2, Jorge Ricardo-da-Silva¹

1.LEAF – (Linking Landscape Environment Agriculture and Food ) Research Center, Instituto Superior de Agronomia, Univer-sidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
2.CeFEMA – (Centre of Physics and Engineering of Advanced Materials) Research Center, Instituto Superior Técnico, Univer-sidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

FTIR spectroscopy, wine, quality control, authenticity assessment

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.