terclim by ICS banner
IVES 9 IVES Conference Series 9 FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

Abstract

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed. For this reason, an extended literature review took place identifying gaps for further research meeting the needs of the modern wine industry (Thanasi et al., 2022). The methodology that was followed was based on grouping the different studies according to the main sampling material used – 1) leaves, stems, and berries; 2) grape musts; 3) wines. For each sampling material the studies were categorized in terms of 1) main aim of the analysis; 2) type of sample; 3) sample preparation mode;4) wavenumber range (/cm); 5) spectral pre-treatment; 6) statistical method.

The most important findings were: 1) the different sample preparation modes can influence the spectra;

2) a limited number of samples (less than 100 in most cases) was used and the validation took place with cross-validation tests; 3) the developed models were not applied to different grapevine cultivars, har- vests, and types of wines; 4) many developed methods were focused on a specific oenological parameter or chemical compound or a specific stage of the winemaking process; 5) compounds with a concentration higher than 1 g/L are easier to be determined by FTIR; 6) the complexity of the wine matrix and the chemical similarity of the compounds under study makes the interpretation of the spectra very difficult due to several interferences.

1. Thanasi V., Catarino S., Ricardo-da-Silva J., 2022. Fourier-Transform Infrared Spectroscopy in monitoring the wine produc-tion. Ciência Téc. Vitiv., 37(1), 77-99. https://doi.org/10.1051/ctv/ctv2022370179

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vasiliki Thanasi¹, Sofia Catarino1,2, Jorge Ricardo-da-Silva¹

1.LEAF – (Linking Landscape Environment Agriculture and Food ) Research Center, Instituto Superior de Agronomia, Univer-sidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
2.CeFEMA – (Centre of Physics and Engineering of Advanced Materials) Research Center, Instituto Superior Técnico, Univer-sidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

FTIR spectroscopy, wine, quality control, authenticity assessment

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.