terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Abstract

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1]. Moreover, triggered by the presence of ethanol in wines, the Marangoni effect increases the exhaust of flavored molecules in the glass headspace [2]. In addition, ethanol is known to modify the orthonasal detection threshold of aromas (and especially the fruity aromas [2]), and it can also trigger the trigeminal system leading to tingling and/or warm sensation [2]. Monitoring gaseous ethanol, in space and time, in the headspace of wine glasses is therefore crucial to better understand the neuro-physicochemical mechanisms responsible for aroma release and flavour perception.

For this purpose, micro-gas chromatography was used in the past to simultaneously monitor gas-phase ethanol and CO₂ in the headspace of champagne glasses, but with a relatively poor temporal resolution leading to a one-minute data sampling interval [3], [4]. Since the last decade at GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique), tunable diode laser absorption spectroscopy has shown to be a well-adapted method to accurately monitor gas-phase CO₂ in the headspace of glasses poured with champagne [5]. The tunability of semiconductor laser with current modulation provides CO₂ monitoring with a high temporal resolution of 42 measurements per seconds. Lastly, thanks to the recent interband cascade laser (ICL) technology, the CO₂ sensor was upgraded to monitor gaseous ethanol. This new quantum laser source, combined with previous technology developed for the monitoring of gas-phase CO₂, al-lowed us to simultaneously monitor gas-phase CO₂ and ethanol under standard still wine and sparkling wine tasting conditions. The first data sets obtained in the headspace of a glass poured with a standard brut-labelled Champagne wine are presented.

 

1. G. Liger-Belair and C. Cilindre, “Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines,” Annu. Rev. Anal. Chem., vol. 14, pp. 21–46, 2021.
2. C. M. Ickes and K. R. Cadwallader, “Effects of Ethanol on Flavor Perception in Alcoholic Beverages,” Chemosens. Percept., vol. 10, no. 4, pp. 119–134, Dec. 2017.
3. C. Cilindre, A. Conreux, and G. Liger-Belair, “Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC),” J. Agric. Food Chem., vol. 59, no. 13, pp. 7317–7323, 2011.
4. G. Liger-Belair, M. Bourget, H. Pron, G. Polidori, and C. Cilindre, “Monitoring gaseous CO 2 and ethanol above champagne glasses: Flute versus coupe, and the role of temperature,” PLoS One, vol. 7, no. 2, pp. 1–8, 2012,.
5. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., vol. 69, no. 7, pp. 2262–2270, 2021.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Florian Lecasse¹, Raphaël Vallon¹, Vincent Alfonso¹, Bertand Parvitte¹, Clara Cilindre¹, Virginie Zeninari¹, Gérard Liger-Belair¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Ethanol, Champagne, Interband Cascade Laser, Spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.