terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Abstract

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1]. Moreover, triggered by the presence of ethanol in wines, the Marangoni effect increases the exhaust of flavored molecules in the glass headspace [2]. In addition, ethanol is known to modify the orthonasal detection threshold of aromas (and especially the fruity aromas [2]), and it can also trigger the trigeminal system leading to tingling and/or warm sensation [2]. Monitoring gaseous ethanol, in space and time, in the headspace of wine glasses is therefore crucial to better understand the neuro-physicochemical mechanisms responsible for aroma release and flavour perception.

For this purpose, micro-gas chromatography was used in the past to simultaneously monitor gas-phase ethanol and CO₂ in the headspace of champagne glasses, but with a relatively poor temporal resolution leading to a one-minute data sampling interval [3], [4]. Since the last decade at GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique), tunable diode laser absorption spectroscopy has shown to be a well-adapted method to accurately monitor gas-phase CO₂ in the headspace of glasses poured with champagne [5]. The tunability of semiconductor laser with current modulation provides CO₂ monitoring with a high temporal resolution of 42 measurements per seconds. Lastly, thanks to the recent interband cascade laser (ICL) technology, the CO₂ sensor was upgraded to monitor gaseous ethanol. This new quantum laser source, combined with previous technology developed for the monitoring of gas-phase CO₂, al-lowed us to simultaneously monitor gas-phase CO₂ and ethanol under standard still wine and sparkling wine tasting conditions. The first data sets obtained in the headspace of a glass poured with a standard brut-labelled Champagne wine are presented.

 

1. G. Liger-Belair and C. Cilindre, “Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines,” Annu. Rev. Anal. Chem., vol. 14, pp. 21–46, 2021.
2. C. M. Ickes and K. R. Cadwallader, “Effects of Ethanol on Flavor Perception in Alcoholic Beverages,” Chemosens. Percept., vol. 10, no. 4, pp. 119–134, Dec. 2017.
3. C. Cilindre, A. Conreux, and G. Liger-Belair, “Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC),” J. Agric. Food Chem., vol. 59, no. 13, pp. 7317–7323, 2011.
4. G. Liger-Belair, M. Bourget, H. Pron, G. Polidori, and C. Cilindre, “Monitoring gaseous CO 2 and ethanol above champagne glasses: Flute versus coupe, and the role of temperature,” PLoS One, vol. 7, no. 2, pp. 1–8, 2012,.
5. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., vol. 69, no. 7, pp. 2262–2270, 2021.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Florian Lecasse¹, Raphaël Vallon¹, Vincent Alfonso¹, Bertand Parvitte¹, Clara Cilindre¹, Virginie Zeninari¹, Gérard Liger-Belair¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Ethanol, Champagne, Interband Cascade Laser, Spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].