terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Abstract

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1]. Moreover, triggered by the presence of ethanol in wines, the Marangoni effect increases the exhaust of flavored molecules in the glass headspace [2]. In addition, ethanol is known to modify the orthonasal detection threshold of aromas (and especially the fruity aromas [2]), and it can also trigger the trigeminal system leading to tingling and/or warm sensation [2]. Monitoring gaseous ethanol, in space and time, in the headspace of wine glasses is therefore crucial to better understand the neuro-physicochemical mechanisms responsible for aroma release and flavour perception.

For this purpose, micro-gas chromatography was used in the past to simultaneously monitor gas-phase ethanol and CO₂ in the headspace of champagne glasses, but with a relatively poor temporal resolution leading to a one-minute data sampling interval [3], [4]. Since the last decade at GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique), tunable diode laser absorption spectroscopy has shown to be a well-adapted method to accurately monitor gas-phase CO₂ in the headspace of glasses poured with champagne [5]. The tunability of semiconductor laser with current modulation provides CO₂ monitoring with a high temporal resolution of 42 measurements per seconds. Lastly, thanks to the recent interband cascade laser (ICL) technology, the CO₂ sensor was upgraded to monitor gaseous ethanol. This new quantum laser source, combined with previous technology developed for the monitoring of gas-phase CO₂, al-lowed us to simultaneously monitor gas-phase CO₂ and ethanol under standard still wine and sparkling wine tasting conditions. The first data sets obtained in the headspace of a glass poured with a standard brut-labelled Champagne wine are presented.

 

1. G. Liger-Belair and C. Cilindre, “Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines,” Annu. Rev. Anal. Chem., vol. 14, pp. 21–46, 2021.
2. C. M. Ickes and K. R. Cadwallader, “Effects of Ethanol on Flavor Perception in Alcoholic Beverages,” Chemosens. Percept., vol. 10, no. 4, pp. 119–134, Dec. 2017.
3. C. Cilindre, A. Conreux, and G. Liger-Belair, “Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC),” J. Agric. Food Chem., vol. 59, no. 13, pp. 7317–7323, 2011.
4. G. Liger-Belair, M. Bourget, H. Pron, G. Polidori, and C. Cilindre, “Monitoring gaseous CO 2 and ethanol above champagne glasses: Flute versus coupe, and the role of temperature,” PLoS One, vol. 7, no. 2, pp. 1–8, 2012,.
5. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., vol. 69, no. 7, pp. 2262–2270, 2021.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Florian Lecasse¹, Raphaël Vallon¹, Vincent Alfonso¹, Bertand Parvitte¹, Clara Cilindre¹, Virginie Zeninari¹, Gérard Liger-Belair¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Ethanol, Champagne, Interband Cascade Laser, Spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.