terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

Abstract

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.
To obtain a general view, the wines were subjected to basic chemical analyzes, in addition to the analysis of the aromatic profile by gas chromatography coupled with mass spectrometry (GC-MS) and various extraction techniques, Solid Phase Extraction (SPE) and headspace solid phase micro-extraction (HS-SPME). A total of 73 volatile molecules were analyzed. The respective OAVs have been calculated for their impact on the aroma of Prosecco wine. The resulting molecules with the greatest impact were ethyl hexanoate, isoamyl acetate and beta-damascenone mainly from fruity notes. Also important is the molecule of ethyl cinnamate which gives floral notes. Subsequently, the possible effects of subzones in wines were investigated. For what the Kruskal Wallis test was used and from this 16 compounds were identified that differ between the different areas of origin of the wines. The resulting compounds found in samples characterizing the areas of origin of the samples were: isoamyl alcohol, octanoic acid, limonene, 3-carene, α-pinepinene, α-phellandrene, p-cymene, rose oxide, TPB, carbon disulfide, diethyl diulfide, dimethyl disulfide, diethyl disulfide, α-pinene, α-myrcene and ethyl thioacete. These molecules are major norisoprenoids, esters and sulfur compounds. Finally, the wines were evaluated from a sensorial point of view by mean of a sorting task analysis. The clustering in three groups of the wine samples was observed, partially attributable to the areas of origin.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Davide Slaghenaufi1,*, Giovanni Luzzini¹, Matteo Borgato¹, Anita Boscaini², Andrea Dal Cin², Vittorio Zandonà², Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona, Villa Lebrecht, via della Pieve 70, 37029 San Pietro, Cariano, Italy
2. Masi Agricola, Via Monteleone, 26, Sant’Ambrogio di Valpolicella, 37015 Verona VR, Italy

Contact the author*

Keywords

Prosecco, sparkling wine, volatile compounds, SPME; GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.