terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

Abstract

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.
To obtain a general view, the wines were subjected to basic chemical analyzes, in addition to the analysis of the aromatic profile by gas chromatography coupled with mass spectrometry (GC-MS) and various extraction techniques, Solid Phase Extraction (SPE) and headspace solid phase micro-extraction (HS-SPME). A total of 73 volatile molecules were analyzed. The respective OAVs have been calculated for their impact on the aroma of Prosecco wine. The resulting molecules with the greatest impact were ethyl hexanoate, isoamyl acetate and beta-damascenone mainly from fruity notes. Also important is the molecule of ethyl cinnamate which gives floral notes. Subsequently, the possible effects of subzones in wines were investigated. For what the Kruskal Wallis test was used and from this 16 compounds were identified that differ between the different areas of origin of the wines. The resulting compounds found in samples characterizing the areas of origin of the samples were: isoamyl alcohol, octanoic acid, limonene, 3-carene, α-pinepinene, α-phellandrene, p-cymene, rose oxide, TPB, carbon disulfide, diethyl diulfide, dimethyl disulfide, diethyl disulfide, α-pinene, α-myrcene and ethyl thioacete. These molecules are major norisoprenoids, esters and sulfur compounds. Finally, the wines were evaluated from a sensorial point of view by mean of a sorting task analysis. The clustering in three groups of the wine samples was observed, partially attributable to the areas of origin.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Davide Slaghenaufi1,*, Giovanni Luzzini¹, Matteo Borgato¹, Anita Boscaini², Andrea Dal Cin², Vittorio Zandonà², Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona, Villa Lebrecht, via della Pieve 70, 37029 San Pietro, Cariano, Italy
2. Masi Agricola, Via Monteleone, 26, Sant’Ambrogio di Valpolicella, 37015 Verona VR, Italy

Contact the author*

Keywords

Prosecco, sparkling wine, volatile compounds, SPME; GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).