terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

Abstract

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.
To obtain a general view, the wines were subjected to basic chemical analyzes, in addition to the analysis of the aromatic profile by gas chromatography coupled with mass spectrometry (GC-MS) and various extraction techniques, Solid Phase Extraction (SPE) and headspace solid phase micro-extraction (HS-SPME). A total of 73 volatile molecules were analyzed. The respective OAVs have been calculated for their impact on the aroma of Prosecco wine. The resulting molecules with the greatest impact were ethyl hexanoate, isoamyl acetate and beta-damascenone mainly from fruity notes. Also important is the molecule of ethyl cinnamate which gives floral notes. Subsequently, the possible effects of subzones in wines were investigated. For what the Kruskal Wallis test was used and from this 16 compounds were identified that differ between the different areas of origin of the wines. The resulting compounds found in samples characterizing the areas of origin of the samples were: isoamyl alcohol, octanoic acid, limonene, 3-carene, α-pinepinene, α-phellandrene, p-cymene, rose oxide, TPB, carbon disulfide, diethyl diulfide, dimethyl disulfide, diethyl disulfide, α-pinene, α-myrcene and ethyl thioacete. These molecules are major norisoprenoids, esters and sulfur compounds. Finally, the wines were evaluated from a sensorial point of view by mean of a sorting task analysis. The clustering in three groups of the wine samples was observed, partially attributable to the areas of origin.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Davide Slaghenaufi1,*, Giovanni Luzzini¹, Matteo Borgato¹, Anita Boscaini², Andrea Dal Cin², Vittorio Zandonà², Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona, Villa Lebrecht, via della Pieve 70, 37029 San Pietro, Cariano, Italy
2. Masi Agricola, Via Monteleone, 26, Sant’Ambrogio di Valpolicella, 37015 Verona VR, Italy

Contact the author*

Keywords

Prosecco, sparkling wine, volatile compounds, SPME; GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.