terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

CHARACTERIZATION OF THE AROMA PROFILE OF COMMERCIAL PROSECCO SPARKLING WINES

Abstract

The typicality of a wine, as well as its aromatic identity, are attributes that are highly sought after and requested by the current market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved.In this thesis work, the characterization of the aromatic composition of Prosecco wines available on the market with a price range between 7 and 13 euros was carried out. These wines came from three different areas of origin such as Valdobbiadene, Asolo and Treviso.
To obtain a general view, the wines were subjected to basic chemical analyzes, in addition to the analysis of the aromatic profile by gas chromatography coupled with mass spectrometry (GC-MS) and various extraction techniques, Solid Phase Extraction (SPE) and headspace solid phase micro-extraction (HS-SPME). A total of 73 volatile molecules were analyzed. The respective OAVs have been calculated for their impact on the aroma of Prosecco wine. The resulting molecules with the greatest impact were ethyl hexanoate, isoamyl acetate and beta-damascenone mainly from fruity notes. Also important is the molecule of ethyl cinnamate which gives floral notes. Subsequently, the possible effects of subzones in wines were investigated. For what the Kruskal Wallis test was used and from this 16 compounds were identified that differ between the different areas of origin of the wines. The resulting compounds found in samples characterizing the areas of origin of the samples were: isoamyl alcohol, octanoic acid, limonene, 3-carene, α-pinepinene, α-phellandrene, p-cymene, rose oxide, TPB, carbon disulfide, diethyl diulfide, dimethyl disulfide, diethyl disulfide, α-pinene, α-myrcene and ethyl thioacete. These molecules are major norisoprenoids, esters and sulfur compounds. Finally, the wines were evaluated from a sensorial point of view by mean of a sorting task analysis. The clustering in three groups of the wine samples was observed, partially attributable to the areas of origin.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Davide Slaghenaufi1,*, Giovanni Luzzini¹, Matteo Borgato¹, Anita Boscaini², Andrea Dal Cin², Vittorio Zandonà², Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona, Villa Lebrecht, via della Pieve 70, 37029 San Pietro, Cariano, Italy
2. Masi Agricola, Via Monteleone, 26, Sant’Ambrogio di Valpolicella, 37015 Verona VR, Italy

Contact the author*

Keywords

Prosecco, sparkling wine, volatile compounds, SPME; GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.