terclim by ICS banner
IVES 9 IVES Conference Series 9 RED WINE AGING THROUGH 1H-NMR METABOLOMICS

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Abstract

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.

¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families. The aim of the present study is to investigate the evolution of wine during aging in oak barrels with NMR-based metabolomics.

Red wines, produced in an estate of Bordeaux region, were kept in oak barrels from three different manufacturers. They were firstly sampled after one month of aging. They were then resampled after twelve months of storage in oak barrels within the estate cellar. The evolution of wine constituents during aging was measured by ¹H-NMR-based metabolomics. NMR spectra were submitted to targeted and untargeted approaches.

Data were then statistically processed through multivariate statistical analysis such as principal component analysis (PCA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). It was used to better watch the distribution of metabolic variance, and to sharpen the separation between observations groups. The results of supervised models were validated using cross permutation tests and ANOVA. Statistical significances were then assessed for the potential discriminant compounds thanks to analysis of variance (ANOVA) or t-test. Based on this analysis, wine maturation effect was monitored, and discriminant metabolites were identified.

Regarding aging effect, wines analyzed after one month of aging exhibit higher contents of amino acids, catechin and epicatechin, acetoin and choline. On another side, wines analyzed after twelve months of aging present higher contents of acetic acid, ethyl lactate, arabinose, and glucose.

As it concerns barrel origins, samples showed higher heterogeneity after one month than after twelve months. However, significant differences were observed between wines depending on the barrel manufacturers.

 

1. Le Mao, I., Da Costa, G., & Richard, T. (2023). 1 H-NMR metabolomics for wine screening and analysis. OENO One, 57(1), 15-31. https://doi.org/10.20870/oeno-one.2023.57.1.7134 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Leleu, Gregory Da Costa, Inès Le Mao, Tristan Richard

University of Bordeaux, Bordeaux INP, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

wine aging, NMR metabolomics, oak barrels, fingerprinting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.