terclim by ICS banner
IVES 9 IVES Conference Series 9 RED WINE AGING THROUGH 1H-NMR METABOLOMICS

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Abstract

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.

¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families. The aim of the present study is to investigate the evolution of wine during aging in oak barrels with NMR-based metabolomics.

Red wines, produced in an estate of Bordeaux region, were kept in oak barrels from three different manufacturers. They were firstly sampled after one month of aging. They were then resampled after twelve months of storage in oak barrels within the estate cellar. The evolution of wine constituents during aging was measured by ¹H-NMR-based metabolomics. NMR spectra were submitted to targeted and untargeted approaches.

Data were then statistically processed through multivariate statistical analysis such as principal component analysis (PCA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). It was used to better watch the distribution of metabolic variance, and to sharpen the separation between observations groups. The results of supervised models were validated using cross permutation tests and ANOVA. Statistical significances were then assessed for the potential discriminant compounds thanks to analysis of variance (ANOVA) or t-test. Based on this analysis, wine maturation effect was monitored, and discriminant metabolites were identified.

Regarding aging effect, wines analyzed after one month of aging exhibit higher contents of amino acids, catechin and epicatechin, acetoin and choline. On another side, wines analyzed after twelve months of aging present higher contents of acetic acid, ethyl lactate, arabinose, and glucose.

As it concerns barrel origins, samples showed higher heterogeneity after one month than after twelve months. However, significant differences were observed between wines depending on the barrel manufacturers.

 

1. Le Mao, I., Da Costa, G., & Richard, T. (2023). 1 H-NMR metabolomics for wine screening and analysis. OENO One, 57(1), 15-31. https://doi.org/10.20870/oeno-one.2023.57.1.7134 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Leleu, Gregory Da Costa, Inès Le Mao, Tristan Richard

University of Bordeaux, Bordeaux INP, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

wine aging, NMR metabolomics, oak barrels, fingerprinting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.