terclim by ICS banner
IVES 9 IVES Conference Series 9 RED WINE AGING THROUGH 1H-NMR METABOLOMICS

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Abstract

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.

¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families. The aim of the present study is to investigate the evolution of wine during aging in oak barrels with NMR-based metabolomics.

Red wines, produced in an estate of Bordeaux region, were kept in oak barrels from three different manufacturers. They were firstly sampled after one month of aging. They were then resampled after twelve months of storage in oak barrels within the estate cellar. The evolution of wine constituents during aging was measured by ¹H-NMR-based metabolomics. NMR spectra were submitted to targeted and untargeted approaches.

Data were then statistically processed through multivariate statistical analysis such as principal component analysis (PCA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). It was used to better watch the distribution of metabolic variance, and to sharpen the separation between observations groups. The results of supervised models were validated using cross permutation tests and ANOVA. Statistical significances were then assessed for the potential discriminant compounds thanks to analysis of variance (ANOVA) or t-test. Based on this analysis, wine maturation effect was monitored, and discriminant metabolites were identified.

Regarding aging effect, wines analyzed after one month of aging exhibit higher contents of amino acids, catechin and epicatechin, acetoin and choline. On another side, wines analyzed after twelve months of aging present higher contents of acetic acid, ethyl lactate, arabinose, and glucose.

As it concerns barrel origins, samples showed higher heterogeneity after one month than after twelve months. However, significant differences were observed between wines depending on the barrel manufacturers.

 

1. Le Mao, I., Da Costa, G., & Richard, T. (2023). 1 H-NMR metabolomics for wine screening and analysis. OENO One, 57(1), 15-31. https://doi.org/10.20870/oeno-one.2023.57.1.7134 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Leleu, Gregory Da Costa, Inès Le Mao, Tristan Richard

University of Bordeaux, Bordeaux INP, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

wine aging, NMR metabolomics, oak barrels, fingerprinting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).