terclim by ICS banner
IVES 9 IVES Conference Series 9 RED WINE AGING THROUGH 1H-NMR METABOLOMICS

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Abstract

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.

¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families. The aim of the present study is to investigate the evolution of wine during aging in oak barrels with NMR-based metabolomics.

Red wines, produced in an estate of Bordeaux region, were kept in oak barrels from three different manufacturers. They were firstly sampled after one month of aging. They were then resampled after twelve months of storage in oak barrels within the estate cellar. The evolution of wine constituents during aging was measured by ¹H-NMR-based metabolomics. NMR spectra were submitted to targeted and untargeted approaches.

Data were then statistically processed through multivariate statistical analysis such as principal component analysis (PCA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). It was used to better watch the distribution of metabolic variance, and to sharpen the separation between observations groups. The results of supervised models were validated using cross permutation tests and ANOVA. Statistical significances were then assessed for the potential discriminant compounds thanks to analysis of variance (ANOVA) or t-test. Based on this analysis, wine maturation effect was monitored, and discriminant metabolites were identified.

Regarding aging effect, wines analyzed after one month of aging exhibit higher contents of amino acids, catechin and epicatechin, acetoin and choline. On another side, wines analyzed after twelve months of aging present higher contents of acetic acid, ethyl lactate, arabinose, and glucose.

As it concerns barrel origins, samples showed higher heterogeneity after one month than after twelve months. However, significant differences were observed between wines depending on the barrel manufacturers.

 

1. Le Mao, I., Da Costa, G., & Richard, T. (2023). 1 H-NMR metabolomics for wine screening and analysis. OENO One, 57(1), 15-31. https://doi.org/10.20870/oeno-one.2023.57.1.7134 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Leleu, Gregory Da Costa, Inès Le Mao, Tristan Richard

University of Bordeaux, Bordeaux INP, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

wine aging, NMR metabolomics, oak barrels, fingerprinting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.