terclim by ICS banner
IVES 9 IVES Conference Series 9 RED WINE AGING THROUGH 1H-NMR METABOLOMICS

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Abstract

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.

¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families. The aim of the present study is to investigate the evolution of wine during aging in oak barrels with NMR-based metabolomics.

Red wines, produced in an estate of Bordeaux region, were kept in oak barrels from three different manufacturers. They were firstly sampled after one month of aging. They were then resampled after twelve months of storage in oak barrels within the estate cellar. The evolution of wine constituents during aging was measured by ¹H-NMR-based metabolomics. NMR spectra were submitted to targeted and untargeted approaches.

Data were then statistically processed through multivariate statistical analysis such as principal component analysis (PCA), and orthogonal projections to latent structures discriminant analysis (OPLS-DA). It was used to better watch the distribution of metabolic variance, and to sharpen the separation between observations groups. The results of supervised models were validated using cross permutation tests and ANOVA. Statistical significances were then assessed for the potential discriminant compounds thanks to analysis of variance (ANOVA) or t-test. Based on this analysis, wine maturation effect was monitored, and discriminant metabolites were identified.

Regarding aging effect, wines analyzed after one month of aging exhibit higher contents of amino acids, catechin and epicatechin, acetoin and choline. On another side, wines analyzed after twelve months of aging present higher contents of acetic acid, ethyl lactate, arabinose, and glucose.

As it concerns barrel origins, samples showed higher heterogeneity after one month than after twelve months. However, significant differences were observed between wines depending on the barrel manufacturers.

 

1. Le Mao, I., Da Costa, G., & Richard, T. (2023). 1 H-NMR metabolomics for wine screening and analysis. OENO One, 57(1), 15-31. https://doi.org/10.20870/oeno-one.2023.57.1.7134 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Leleu, Gregory Da Costa, Inès Le Mao, Tristan Richard

University of Bordeaux, Bordeaux INP, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France

Contact the author*

Keywords

wine aging, NMR metabolomics, oak barrels, fingerprinting

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.