terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Abstract

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF). Our aim was to study the effect of FA addition in natural grape must without SO₂ on alcoholic and malolactic fermentation. AF was performed on Muscat of Alexandria grape must without SO₂ under two different conditions. i) Grape must 1 without FA, pH 3.49 and ii) Grape must 2 with 0.6 g/L of FA, pH 3.39; both had an L-malic acid concentration of 1.44 g/L. AF was developed at 20°C and spontaneously, monitored by must density determination. The evolution of L-malic acid and FA was monitored enzymatically⁵ and plate counts were performed for Saccharomyces, non-Saccharomyces and LAB populations. In both grape musts, no significant differences were observed in the development of AF. In grape must 1 MLF was performed during AF and produced a lactic bite. A progressive decrease in FA was observed in grape must 2 during AF, reaching 0.087 g/L at the end. From the wine obtained from grape must 2, two conditions were prepared i) a wine uncorrected with FA with a concentration of 0.087 g/L and ii) a wine with FA correction to 0.6 g/L. MLF was tried to take place at a temperature of 20°C under two new conditions, i) spontaneous and ii) with inoculation of O. oeni VP41 (Lallemand S.A.). MLF was monitored following the evolution of L-malic acid and LAB populations by plate count. MLF was not performed in all conditions, except for wines without FA correction inoculated with LAB. In conclusion, the addition of FA in must at pH 3.5 without SO₂ with low initial LAB populations may be an effective strategy to prevent MLF during AF in conditions of absence of SO₂. However, FA supplementation in the grape juice will not inhibit the subsequent development of the MFL in the wine, since a large part of this acid is metabolized by the yeasts, being necessary supplementing with FA again to ensure the non-development of malolactic fermentation in the case of high LAB populations.

 

1. SUMBY, K.M., BARTLE, L., GRBIN, P.R. JIRANEK V., 2019. Measures to improve wine malolactic fermentation, Applied Microbiology and Biotechnology, vol 103, pp. 2033–2051.
2. Bauer R., Dicks L. M. T. 2004. Control of malolactic fermentation in wine A Review, South African Journal for Enology and Viticulture 25:74⟨88.
3. OIV, 2021. International Organization of Vine and Wine. Summary of Resolutions Adopted in 2021 by the 19th General Assembly of the OIV- Paris (France).
4. Morata A., Bañuelos M. A., López C., Song C., Vejarano R., Loira I., PALOMERO F. , Suarez Lepe J. A. 2020. Use of fumaric acid to control pH and inhibit malolactic fermentation in wines, Food Additives & Contaminants: Part A, 37:2, 228-238
5. FERNÁNDEZ-VÁSQUEZ D., ROZÈS N., CANALS J.M., BORDONS A., REGUANT C., ZAMORA F. 2021. New enzymatic method for estimating fumaric acid in wines. OENO One 2021, 3, 273-281.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Violeta García-Viñola¹, Montse Poblet¹, Albert Bordons², Fernando Zamora³, Joan Miquel Canals³, Cristina Reguant² y Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili
2. Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
3. Grup de Tecnologia Enològica Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

Fumaric acid, Alcoholic fermentation, Malolactic fermentation, Spontaneous fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.