terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Abstract

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF). Our aim was to study the effect of FA addition in natural grape must without SO₂ on alcoholic and malolactic fermentation. AF was performed on Muscat of Alexandria grape must without SO₂ under two different conditions. i) Grape must 1 without FA, pH 3.49 and ii) Grape must 2 with 0.6 g/L of FA, pH 3.39; both had an L-malic acid concentration of 1.44 g/L. AF was developed at 20°C and spontaneously, monitored by must density determination. The evolution of L-malic acid and FA was monitored enzymatically⁵ and plate counts were performed for Saccharomyces, non-Saccharomyces and LAB populations. In both grape musts, no significant differences were observed in the development of AF. In grape must 1 MLF was performed during AF and produced a lactic bite. A progressive decrease in FA was observed in grape must 2 during AF, reaching 0.087 g/L at the end. From the wine obtained from grape must 2, two conditions were prepared i) a wine uncorrected with FA with a concentration of 0.087 g/L and ii) a wine with FA correction to 0.6 g/L. MLF was tried to take place at a temperature of 20°C under two new conditions, i) spontaneous and ii) with inoculation of O. oeni VP41 (Lallemand S.A.). MLF was monitored following the evolution of L-malic acid and LAB populations by plate count. MLF was not performed in all conditions, except for wines without FA correction inoculated with LAB. In conclusion, the addition of FA in must at pH 3.5 without SO₂ with low initial LAB populations may be an effective strategy to prevent MLF during AF in conditions of absence of SO₂. However, FA supplementation in the grape juice will not inhibit the subsequent development of the MFL in the wine, since a large part of this acid is metabolized by the yeasts, being necessary supplementing with FA again to ensure the non-development of malolactic fermentation in the case of high LAB populations.

 

1. SUMBY, K.M., BARTLE, L., GRBIN, P.R. JIRANEK V., 2019. Measures to improve wine malolactic fermentation, Applied Microbiology and Biotechnology, vol 103, pp. 2033–2051.
2. Bauer R., Dicks L. M. T. 2004. Control of malolactic fermentation in wine A Review, South African Journal for Enology and Viticulture 25:74⟨88.
3. OIV, 2021. International Organization of Vine and Wine. Summary of Resolutions Adopted in 2021 by the 19th General Assembly of the OIV- Paris (France).
4. Morata A., Bañuelos M. A., López C., Song C., Vejarano R., Loira I., PALOMERO F. , Suarez Lepe J. A. 2020. Use of fumaric acid to control pH and inhibit malolactic fermentation in wines, Food Additives & Contaminants: Part A, 37:2, 228-238
5. FERNÁNDEZ-VÁSQUEZ D., ROZÈS N., CANALS J.M., BORDONS A., REGUANT C., ZAMORA F. 2021. New enzymatic method for estimating fumaric acid in wines. OENO One 2021, 3, 273-281.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Violeta García-Viñola¹, Montse Poblet¹, Albert Bordons², Fernando Zamora³, Joan Miquel Canals³, Cristina Reguant² y Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili
2. Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.
3. Grup de Tecnologia Enològica Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili.

Contact the author*

Keywords

Fumaric acid, Alcoholic fermentation, Malolactic fermentation, Spontaneous fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].