terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Abstract

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltra-tion technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine. Nevertheless, ultrafiltration was also applied to red wine, despite the removal of anthocyanins and tannins (associated with colour and textural properties) being inherently detrimental to wine quality, so as to better characterise the chemical consequences of membrane filtration. The composition of permeate and retentate derived from pilot-scale fractionation of red and white wine using 10 and 20 kDa membranes, and different permeation rates (50, 80, 90, 95%) was investigated. The alcohol content and pH of permeate and retentate were not significantly different from that of the initial wine, but titratable acidity and macromolecules (proteins, polysaccharides and phenolic compounds, including anthocyanins for red wine) were progressively concentrated in the retentate, as a function of both membrane MWCO and the degree of permeation. Red wine permeates were stripped of much of their essential character, such that they were not considered commercially acceptable; whereas the removal of white wine phenolics demonstrated the potential for ultrafiltration to remediate oxidised or highly phenolic wines. Subsequent trials investigated the addition of retentate to (i) fermenting red grape must, (ii) dealcoholised wine, and (iii) permeate, as a potential strategies for enhancing wine colour stability, flavour intensity and/or mouthfeel properties. Whereas colour enhancements were not apparent, likely due to the inherent effects of dilution, differences in wine flavour and mouthfeel were perceived via sensory profiling using the Rate-All-That-Apply method. Findings will enable the wine industry to make informed decisions regarding the suitability of ultrafiltration technology as an innovative approach to improving wine quality and process efficiency, and therefore profitability.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Stephanie Angela1,2, David Wollan2,3, Richard Muhlack1,2, Keren Bindon4, Kerry Wilkinson1,2

1. The University of Adelaide
2. The Australian Research Council Training Centre for Innovative Wine Production
3. VAF Memstar
4. The Australian Wine Research Institute

Contact the author*

Keywords

membranes, phenolics, proteins, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.