terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Abstract

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltra-tion technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine. Nevertheless, ultrafiltration was also applied to red wine, despite the removal of anthocyanins and tannins (associated with colour and textural properties) being inherently detrimental to wine quality, so as to better characterise the chemical consequences of membrane filtration. The composition of permeate and retentate derived from pilot-scale fractionation of red and white wine using 10 and 20 kDa membranes, and different permeation rates (50, 80, 90, 95%) was investigated. The alcohol content and pH of permeate and retentate were not significantly different from that of the initial wine, but titratable acidity and macromolecules (proteins, polysaccharides and phenolic compounds, including anthocyanins for red wine) were progressively concentrated in the retentate, as a function of both membrane MWCO and the degree of permeation. Red wine permeates were stripped of much of their essential character, such that they were not considered commercially acceptable; whereas the removal of white wine phenolics demonstrated the potential for ultrafiltration to remediate oxidised or highly phenolic wines. Subsequent trials investigated the addition of retentate to (i) fermenting red grape must, (ii) dealcoholised wine, and (iii) permeate, as a potential strategies for enhancing wine colour stability, flavour intensity and/or mouthfeel properties. Whereas colour enhancements were not apparent, likely due to the inherent effects of dilution, differences in wine flavour and mouthfeel were perceived via sensory profiling using the Rate-All-That-Apply method. Findings will enable the wine industry to make informed decisions regarding the suitability of ultrafiltration technology as an innovative approach to improving wine quality and process efficiency, and therefore profitability.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Stephanie Angela1,2, David Wollan2,3, Richard Muhlack1,2, Keren Bindon4, Kerry Wilkinson1,2

1. The University of Adelaide
2. The Australian Research Council Training Centre for Innovative Wine Production
3. VAF Memstar
4. The Australian Wine Research Institute

Contact the author*

Keywords

membranes, phenolics, proteins, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).