OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Red wine astringency: evolution of tribological parameters during different harvest dates

Red wine astringency: evolution of tribological parameters during different harvest dates

Abstract

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products. Based on this sensory parameter, are made relevant decisions in wine production including the moment of grape harvest (phenolic ripeness), the time and intensity of maceration, the time and type of aging process, and the target market of wines. Notably, the selection of the optimal grape astringency during ripeness is one of the most crucial decisions in winemaking. However, grape astringency is an attribute challenging to evaluate and standardize by tasters since the grapes are heterogeneous and generate along their ripeness different sensory descriptors, such as the typical drying astringency found in immature grapes. Here we used a tribological system to determinate the red wine astringency produced on different harvest dates. Mixtures of whole human saliva and red wines as Cabernet Sauvignon and Carménère, with similar tannin content but different sub-quality (rough and soft/velvety, respectively), were evaluated by their lubrication behavior. Red wines produced significant changes in the saliva friction coefficient during the harvest dates, with an opposite evolution between the Cabernet Sauvignon and Carménère. Also, microstructure observation revealed differences between conformation and surface of the tan-ninprotein aggregates of both red wines, suggesting a correlation between them and the astringency sensory perception. Results from this work demonstrate that tribology techniques can be a useful tool for both to evaluate astringency on red wines and to help us to understand the phenomenon of sub-qualities.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Natalia Brossard, Giuseppina Parpinello, Fernando Osorio, Edmundo Bordeu, Jianshe Chen

Department of Food Sciences, University of Bologna, P.za Goidanich 60, I-47023 Cesena, Italy.
Department of Food Science and Technology, University of Santiago Chile, Avda. Libertador Bernardo O’Higgins 3363, San-tiago, 9170022, Chile.
Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Avda. Vicuña Mackenna 4860, Santiago, 7820436, Chile.
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China.

Contact the author

Keywords

wine astringency, tribology, human saliva, harvest dates 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.

La producción vitivinícola como fuente de impactos positivos en el medio seminatural

Wine is at risk of being labelled as a dangerous health product, based on studies that focus on its alcohol content. However, multiple studies suggest that moderate consumption is healthy. Changing the focus from health impacts to the environmental and socioeconomic impacts that wine companies cause, what can be said?

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.