OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Red wine astringency: evolution of tribological parameters during different harvest dates

Red wine astringency: evolution of tribological parameters during different harvest dates

Abstract

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products. Based on this sensory parameter, are made relevant decisions in wine production including the moment of grape harvest (phenolic ripeness), the time and intensity of maceration, the time and type of aging process, and the target market of wines. Notably, the selection of the optimal grape astringency during ripeness is one of the most crucial decisions in winemaking. However, grape astringency is an attribute challenging to evaluate and standardize by tasters since the grapes are heterogeneous and generate along their ripeness different sensory descriptors, such as the typical drying astringency found in immature grapes. Here we used a tribological system to determinate the red wine astringency produced on different harvest dates. Mixtures of whole human saliva and red wines as Cabernet Sauvignon and Carménère, with similar tannin content but different sub-quality (rough and soft/velvety, respectively), were evaluated by their lubrication behavior. Red wines produced significant changes in the saliva friction coefficient during the harvest dates, with an opposite evolution between the Cabernet Sauvignon and Carménère. Also, microstructure observation revealed differences between conformation and surface of the tan-ninprotein aggregates of both red wines, suggesting a correlation between them and the astringency sensory perception. Results from this work demonstrate that tribology techniques can be a useful tool for both to evaluate astringency on red wines and to help us to understand the phenomenon of sub-qualities.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Natalia Brossard, Giuseppina Parpinello, Fernando Osorio, Edmundo Bordeu, Jianshe Chen

Department of Food Sciences, University of Bologna, P.za Goidanich 60, I-47023 Cesena, Italy.
Department of Food Science and Technology, University of Santiago Chile, Avda. Libertador Bernardo O’Higgins 3363, San-tiago, 9170022, Chile.
Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Avda. Vicuña Mackenna 4860, Santiago, 7820436, Chile.
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China.

Contact the author

Keywords

wine astringency, tribology, human saliva, harvest dates 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture.

The concept of « terroir »: what does that mean ? What is it useful for ? French young adults perception

Far from complicated discussions on the relevant way to define « terroir », this article deals with the social perception that French young adults (aged from 18 to 30) have of this concept and the way it can help them to become wine consumers.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.