terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Abstract

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood. Thus, the aim of this work was to evaluate if factors cited to affect tannin extraction and solubility, like solid to liquid ratio, anthocyanin concentration, seed to skin proportion, are behind the differences found in the flavanol composition of Syrah, Marselan and Tannat wines. Material and Methods: Over two vintages, 2019 and 2020, wines were made by the blending of grape-must before-fermentation (BFB) or of wines, after-fermentation (AFB), in proportion of 1/2-1/2 of Tannat-Marselan, Tannat-Syrah, Syrah-Marselan, and 1/3-1/3-1/3 of Tannat-Syrah-Marselan. The varietal wines (VW) were elaborated as well. All treatments were vinified by triplicate at experimental scale. Grape samples were taken before each winemaking. Macerations along 8 days were made in all cases. Spectrophotometric analysis were performed together with HPLC-ESI-Q-ToF determinations of flavan-3-ols. The wine to skin prodelphinidins quotient was used to estimate skin contribution to the wine flavanols. Results: In all cases, the flavanol structural composition of the grapes and of the varietal wines corresponded to the one expected for cultivar it belongs to. Thus, the results confirmed that under traditional red-winemaking, the flavanol composition of Syrah and Tannat wines mainly depends on the Skins while in Marselan mainly on seeds. The blend wines had a flavanol content and structural composition that closely matched the one that could be expected considering the composition of the varietal wines and the proportion of each cultivar in the blend. Therefore, there was also no significant effect of the time of blend (BFB vs AFB) on the flavanol concentration or composition of the wines. Conclusion: None of the factors that were modified in the winemaking of blend wines were behind the differences observed in the flavanol composition of the varietal wines of Syrah, Marselan and Tannat. Ongoing studies in Marselan may help to better understand the flavanol composition of wines.

1. Bordiga, M., Coïsson, J.D., Locatelli, M., Arlorio, M. and Travaglia, F., (2013) Pyrogallol: An Alternative Trapping Agent in Proanthocyanidins Analysis. Food Anal Methods 6, 148–156.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Belén Morales¹, Diego Piccardo¹, Gustavo González-Neves¹

1. Facultad de Agronomía, Universidad de la República, Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), Universida de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain. 

Contact the author*

Keywords

Polyphenols, Flavanols, Tannins, Wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.