terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Abstract

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood. Thus, the aim of this work was to evaluate if factors cited to affect tannin extraction and solubility, like solid to liquid ratio, anthocyanin concentration, seed to skin proportion, are behind the differences found in the flavanol composition of Syrah, Marselan and Tannat wines. Material and Methods: Over two vintages, 2019 and 2020, wines were made by the blending of grape-must before-fermentation (BFB) or of wines, after-fermentation (AFB), in proportion of 1/2-1/2 of Tannat-Marselan, Tannat-Syrah, Syrah-Marselan, and 1/3-1/3-1/3 of Tannat-Syrah-Marselan. The varietal wines (VW) were elaborated as well. All treatments were vinified by triplicate at experimental scale. Grape samples were taken before each winemaking. Macerations along 8 days were made in all cases. Spectrophotometric analysis were performed together with HPLC-ESI-Q-ToF determinations of flavan-3-ols. The wine to skin prodelphinidins quotient was used to estimate skin contribution to the wine flavanols. Results: In all cases, the flavanol structural composition of the grapes and of the varietal wines corresponded to the one expected for cultivar it belongs to. Thus, the results confirmed that under traditional red-winemaking, the flavanol composition of Syrah and Tannat wines mainly depends on the Skins while in Marselan mainly on seeds. The blend wines had a flavanol content and structural composition that closely matched the one that could be expected considering the composition of the varietal wines and the proportion of each cultivar in the blend. Therefore, there was also no significant effect of the time of blend (BFB vs AFB) on the flavanol concentration or composition of the wines. Conclusion: None of the factors that were modified in the winemaking of blend wines were behind the differences observed in the flavanol composition of the varietal wines of Syrah, Marselan and Tannat. Ongoing studies in Marselan may help to better understand the flavanol composition of wines.

1. Bordiga, M., Coïsson, J.D., Locatelli, M., Arlorio, M. and Travaglia, F., (2013) Pyrogallol: An Alternative Trapping Agent in Proanthocyanidins Analysis. Food Anal Methods 6, 148–156.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Belén Morales¹, Diego Piccardo¹, Gustavo González-Neves¹

1. Facultad de Agronomía, Universidad de la República, Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), Universida de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain. 

Contact the author*

Keywords

Polyphenols, Flavanols, Tannins, Wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.