terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Abstract

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood. Thus, the aim of this work was to evaluate if factors cited to affect tannin extraction and solubility, like solid to liquid ratio, anthocyanin concentration, seed to skin proportion, are behind the differences found in the flavanol composition of Syrah, Marselan and Tannat wines. Material and Methods: Over two vintages, 2019 and 2020, wines were made by the blending of grape-must before-fermentation (BFB) or of wines, after-fermentation (AFB), in proportion of 1/2-1/2 of Tannat-Marselan, Tannat-Syrah, Syrah-Marselan, and 1/3-1/3-1/3 of Tannat-Syrah-Marselan. The varietal wines (VW) were elaborated as well. All treatments were vinified by triplicate at experimental scale. Grape samples were taken before each winemaking. Macerations along 8 days were made in all cases. Spectrophotometric analysis were performed together with HPLC-ESI-Q-ToF determinations of flavan-3-ols. The wine to skin prodelphinidins quotient was used to estimate skin contribution to the wine flavanols. Results: In all cases, the flavanol structural composition of the grapes and of the varietal wines corresponded to the one expected for cultivar it belongs to. Thus, the results confirmed that under traditional red-winemaking, the flavanol composition of Syrah and Tannat wines mainly depends on the Skins while in Marselan mainly on seeds. The blend wines had a flavanol content and structural composition that closely matched the one that could be expected considering the composition of the varietal wines and the proportion of each cultivar in the blend. Therefore, there was also no significant effect of the time of blend (BFB vs AFB) on the flavanol concentration or composition of the wines. Conclusion: None of the factors that were modified in the winemaking of blend wines were behind the differences observed in the flavanol composition of the varietal wines of Syrah, Marselan and Tannat. Ongoing studies in Marselan may help to better understand the flavanol composition of wines.

1. Bordiga, M., Coïsson, J.D., Locatelli, M., Arlorio, M. and Travaglia, F., (2013) Pyrogallol: An Alternative Trapping Agent in Proanthocyanidins Analysis. Food Anal Methods 6, 148–156.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Belén Morales¹, Diego Piccardo¹, Gustavo González-Neves¹

1. Facultad de Agronomía, Universidad de la República, Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), Universida de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain. 

Contact the author*

Keywords

Polyphenols, Flavanols, Tannins, Wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].