terclim by ICS banner
IVES 9 IVES Conference Series 9 FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Abstract

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood. Thus, the aim of this work was to evaluate if factors cited to affect tannin extraction and solubility, like solid to liquid ratio, anthocyanin concentration, seed to skin proportion, are behind the differences found in the flavanol composition of Syrah, Marselan and Tannat wines. Material and Methods: Over two vintages, 2019 and 2020, wines were made by the blending of grape-must before-fermentation (BFB) or of wines, after-fermentation (AFB), in proportion of 1/2-1/2 of Tannat-Marselan, Tannat-Syrah, Syrah-Marselan, and 1/3-1/3-1/3 of Tannat-Syrah-Marselan. The varietal wines (VW) were elaborated as well. All treatments were vinified by triplicate at experimental scale. Grape samples were taken before each winemaking. Macerations along 8 days were made in all cases. Spectrophotometric analysis were performed together with HPLC-ESI-Q-ToF determinations of flavan-3-ols. The wine to skin prodelphinidins quotient was used to estimate skin contribution to the wine flavanols. Results: In all cases, the flavanol structural composition of the grapes and of the varietal wines corresponded to the one expected for cultivar it belongs to. Thus, the results confirmed that under traditional red-winemaking, the flavanol composition of Syrah and Tannat wines mainly depends on the Skins while in Marselan mainly on seeds. The blend wines had a flavanol content and structural composition that closely matched the one that could be expected considering the composition of the varietal wines and the proportion of each cultivar in the blend. Therefore, there was also no significant effect of the time of blend (BFB vs AFB) on the flavanol concentration or composition of the wines. Conclusion: None of the factors that were modified in the winemaking of blend wines were behind the differences observed in the flavanol composition of the varietal wines of Syrah, Marselan and Tannat. Ongoing studies in Marselan may help to better understand the flavanol composition of wines.

1. Bordiga, M., Coïsson, J.D., Locatelli, M., Arlorio, M. and Travaglia, F., (2013) Pyrogallol: An Alternative Trapping Agent in Proanthocyanidins Analysis. Food Anal Methods 6, 148–156.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Belén Morales¹, Diego Piccardo¹, Gustavo González-Neves¹

1. Facultad de Agronomía, Universidad de la República, Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), Universida de Castilla-La Mancha, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain. 

Contact the author*

Keywords

Polyphenols, Flavanols, Tannins, Wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4