terclim by ICS banner
IVES 9 IVES Conference Series 9 HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Abstract

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological laboratories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave. For this purpose, we performed heat treatments ranging from 40 to 80°C in order to find out which test best reflects a heat wave episode. Each of these tests was carried out at different heating times (kinetic approach) and with wines presenting risks of protein breakage ranging from low to high. The results show that : 1) the test at 50°C for 1h (in a water bath) is by far the most correlated with the haze appearing when the wine is spent 24-48h at 42°C and 2) this test has a safety margin to choose the most adapted protein stabilisation treatment. Conversely, treatment at 80°C gives very high turbidities. The direct consequence of the 80°C-heat test is the use of too high doses of bentonite to eliminate a risk that is in fact poorly assessed. In this study dedicated to Muscat from Spain (Catalunya) wines, we show that it is possible, by means of a 1-hour heat test at 50°C carried out in the laboratory, to decide on the most appropriate treatment. In concrete terms, this translates into the reduction of bentonite doses, but also into the possibility of using oenological alternatives to this treatment.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Richard Marchal¹, Pol Gimenez², Bertrand Robillard³, Fernando Zamora², Jacques-Emmanuel Barbier³, Thomas Sa-Lomon¹, Maria Isabel Araque Granados², Joan-Miquel Canals Bosch²

1. Faculté des Sciences de l’université de Reims Champagne-Ardenne, Laboratoire d’Oenologie, 51687 Reims CEDEX 02, France
2. Universitat Rovira i Virgili, Facultat d’Enologia, Campus Sescelades, 43007 Tarragona, Espagne
3. Institut Œnologique de Champagne – ZI de Mardeuil – 51201 ÉPERNAY Cedex, France

Contact the author*

Keywords

Haze risk, Muscat, wine, heat test

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.